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CHAPTER 1: INTRODUCTION 

The human body is composed of millions of cells which utilize glucose as their primary 

source of energy. Depending on the energy demand and expenditure, glucose levels in the 

bloodstream are regulated by several mechanisms including glycolysis, glycogenolysis and 

gluconeogenesis. Glucose is metabolized via glycolysis and the TCA cycle, resulting in the 

generation of ATP, available to the cell for its energy requirements. However, during fasting when 

the blood glucose levels are low, glucose homeostasis is maintained by glycogen synthesis and 

gluconeogenesis, occurring in various tissues of the body including skeletal muscle, fat tissue, 

kidney, liver and brain. These metabolic processes are tightly regulated to maintain a normal 

fasting blood glucose levels. 

Islet of Langerhans constitute the endocrine part of the pancreas and are embedded in 

the surrounding exocrine tissue. These clusters of cells are composed mainly of α-, β-, δ- and ε- 

cells. α-cells constitute about ~20% of the total cell composition and secrete the endocrine 

hormone, glucagon. β-cells, which constitute the majority of the cell population, secrete the 

hormone insulin. Other hormones such as somatostatin and polypeptide are also secreted from 

the pancreatic islet. The human pancreas are composed of nearly 3 million islets, with a distinct 

morphology where the different endocrine cell types are scattered throughout islet (1). In contrast, 

rodent islets are composed of insulin expressing β-cells clustered in the islet core, surrounded by 

α- and δ-cells (2). 
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Insulin: Structure, Receptor and Functions: 

Insulin, secreted by the pancreatic β-cells, is involved in several metabolic processes and 

regulates nutrient uptake and utilization in the peripheral tissues. It is a 51-amino acid peptide 

comprised of chains A and B, which are connected by disulphide bonds. The insulin gene product 

preproinsulin mRNA is first translated and processed in the rough endoplasmic reticulum to 

produce proinsulin. Proinsulin, which consists of the C-peptide connecting the A and B chains is 

converted to mature insulin by converting enzymes which cleave the C-peptide in the Golgi. The 

mature insulin and C-peptide are then packaged into secretory granules in the Golgi complex (4).  

The insulin receptor is a tyrosine kinase receptor composed of two extracellular alpha and 

two transmembrane beta subunits linked by disulfide bonds (5). The interaction of insulin with the 

alpha sub-units of the insulin receptor induces a conformation change in the beta sub-units, 

activating their intrinsic tyrosine activity leading to auto-phosphorylation of the receptor. This 

results in the phosphorylation of insulin receptor substrate (IRS) proteins. IRS1 and IRS2, which 

are the major isoforms present in the muscle cell, further activate phosphoinositide-3-kinase 

A B 

Figure 1-1: The pancreatic islet: Panel A: Rodent pancreatic islets isolated from 8 weeks old normal 

Sprague Dawley rats [representative of islet preparations used for our experiments]. Panel B: Section 

of an adult human pancreas stained for glucagon (green) and insulin (red). [Modified from Scharfmann 

et al., ref. (3)] 
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(PI3K) and protein kinase B/Akt. 

Subsequent intracellular events lead to 

the translocation of GLUT-4 transporter 

from intracellular storage pools towards 

the plasma membrane, thereby 

mediating uptake of glucose from the 

circulating bloodstream (6, 7). 

Additionally, storage of excess glucose 

by glycogen synthesis catalyzed by 

glycogen synthase is promoted by 

insulin. In the adipose tissue, insulin 

also stimulates lipogenesis by 

increasing glucose and free fatty acid 

uptake, where they are converted and 

stored as triglycerides. 

Glucose-stimulated insulin secretion (GSIS) from the pancreatic β-cell: 

The primary function of the pancreatic β-cell is insulin secretion coupled with glucose 

stimulation. Circulating glucose enters the β-cell through GLUT-2 receptors and is then 

metabolized via the glycolytic pathway and TCA cycle resulting in the generation of ATP. The 

resulting decrease in ATP/ADP ratio results in closure of ATP-sensitive K+ channels, causing the 

plasma membrane to depolarize. This results in the opening of voltage-gated Ca+2 channels 

causing an influx of Ca+2 ions and an increase in intracellular Ca+2 levels. This mobilization of Ca+2 

within the β-cells mediates the translocation of insulin granules towards the membrane for fusion 

and release. This involves cytoskeletal remodeling which enables migration of insulin granules 

from intracellular sites towards the membrane. Although the precise mechanisms involved in 

cytoskeletal reorganization are yet to be fully understood, several investigations have delineated 

Figure 1-2: The Insulin receptor [Chang L et al. ref 

(5)] 
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the roles of small GTP-binding proteins in mediating F-actin reorganization and insulin granule 

transport (8). The docking and fusion of insulin granules at membrane docking sites is also 

mediated by several SNARE proteins such as syntaxin and vesicle-associated membrane protein.  

 

 

 

 

Figure 1-3: Glucose-stimulated insulin secretion (GSIS) [Modified from Wang Z et al. ref (8)] 
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Diabetes 

Diabetes is a serious pathological condition characterized by decreased glucose disposal 

in the body, caused by insufficient insulin secretion from the pancreatic β-cell and decreased 

insulin sensitivity in the peripheral tissues. According to the 2015 International Diabetes 

Federation (IDF) atlas, approximately 415 million adults have been diagnosed with Diabetes 

worldwide, and it is estimated that the number of cases will rise up to 642 million by the year 2040. 

In addition, it is also reported that there are nearly 318 million adults with impaired glucose 

tolerance and increased risk of developing diabetes. Diabetes is mainly of two types: Type 1 

Diabetes (T1DM), also known as insulin-dependent diabetes mellitus (IDDM), and Type 2 

Diabetes (T2DM), also referred to as non-insulin dependent diabetes mellitus (NIDDM). T1D is 

characterized by insufficient insulin secretion caused by auto-immune destruction of the insulin-

secretin pancreatic β-cells. This is mediated by cell death induced by inflammatory cytokines 

secreted by the immune cells, resulting in severe hyperglycemic conditions. Although the causes 

for T1D still remain less understood, it has been suggested that genetic and/or environmental risk 

factors contribute to disease development and progression (9). T2D, however, is characterized 

by insulin resistance and decreased glucose tolerance in the peripheral tissues, resulting from 

environmental and genetic risk factors. This results in prolonged exposure of pancreatic β-cells 

to elevated levels of hyperglycemia, eventually leading to defects in insulin secretory response 

and overt diabetic state. Elevated levels of circulating glucose can affect other tissues including 

retina, kidney and cardiomyocytes and lead to serious diabetes-related complications.  
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Pancreatic β-cell dysfunction: 

Exposure of pancreatic β-cells to glucose results in initiation of several intracellular 

metabolic pathways that mediate GSIS. As reviewed by Bensallem and associates, physiological 

glucose concentrations play a major role in regulating β-cell function (10). Acute exposure to 

stimulatory glucose concentrations has been shown to improve Ca+2 mobilization, protein 

synthesis and β-cell function (11, 12). Furthermore, studies have indicated that prolonged 

exposure to physiological glucose concentrations improves gene expression and is crucial for 

maintaining optimal β-cell function and cell mass (13). However, prolonged exposure to elevated 

levels of glucose exert toxic effects on the β-cell, causing decreased β-cell function and 

proliferation. This condition, termed as glucotoxicity, results in decreased insulin secretory 

response to the high metabolic demand and reduced β-cell mass (14, 15). 

 

Figure 1-4: Prevalence of Diabetes worldwide and estimated increase in the number of patients 
according to the International Diabetes Federation [IDF Diabetes Atlas 2013] 
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GTP-binding proteins 

It is now well-established that changes in intracellular Ca concentrations and generation 

of several soluble second messenger molecules (cAMP) and hydrolytic products of 

phospholipases (PLases) A2, C and D are requisite for GSIS. Moreover, earlier studies have 

shown the requirement of GTP in the insulin secretory mechanism (16, 17). This is further 

supported by evidence suggesting that activation of GTP-binding proteins is required for insulin 

secretion from the β-cell. These G-proteins are of three major classes: 1) The hetero-trimeric G-

proteins, which are involved in membrane-receptor interactions and activation of their 

downstream effectors. 2) The small molecular weight G-proteins, which are mostly involved in 

cytoskeletal remodeling and membrane trafficking of secretory granules. 3) Elongation factors 

and Tau proteins, involved in protein synthesis. 

Figure 1-5: Effects of acute and chronic exposure to glucose concentrations on the pancreatic 
β-cell [Modified from Bensallem et al. ref (10)] 
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Small G-proteins: 

Small G-proteins are categorized into five subfamilies with varying degrees of homology. 

These include Ras, Rho, Rab, Arf and Ran GTPases which have been implicated in various 

cellular functions including gene expression, cytoskeletal remodeling, vesicle trafficking, 

nucleocytoplasmic transport (18). In the context of β-cell function, G-proteins belonging to the 

Rho family including RhoA, Cdc42 and Rac1 have been implicated in cytoskeletal remodeling, 

vesicle fusion and GSIS (8). Although the involvement of Rab sub-family GTPases that include 

Rap1, Rab3A and Rab27 are yet to be fully understood, it has been suggested that these G-

proteins are involved in docking of insulin secretory granules at membrane docking sites (19). 

These small G-proteins, which are inactive when bound to GDP, are activated by their interaction 

with GTP. This process is mediated by several regulatory factors which include: 1) guanine 

nucleotide exchange factors (GEFs), 2) GTPase-activating proteins (GAPs) and 3) GDP-

dissociation inhibitors. Under basal conditions, G-proteins are inactive (GDP-bound) and are 

bound to GDI, which prevent their dissociation with GDP. However, upon stimulation, GDI 

dissociate from the G-protein, thereby releasing GDP. G-proteins can then be activated by 

interacting with GTP, which is mediated by GEFs. Similar to heterotrimeric G-proteins, small G-

proteins also possess a small degree of intrinsic GTPase activity. Therefore, when activated, 

these GTPases shuttle back to their GDP-bound form by hydrolyzing GTP, and this is catalyzed 

by GAPs. 

 

 

 

 

 

Figure 1-6: Rac1 activation cycle [Modified from Kowluru A, ref (18)] 
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Post-translational modifications: 

In addition to the GTP/GDP activation cycle, small G-proteins also undergo a series of 

post-translational modifications at their C-terminal CAAX motifs (C-cysteine; A-amino acid; X-

terminal amino acid). These include: 1) Prenylation, 2) Carboxymethylation and 3)Palmitoyaltion. 

Prenylation involves the attachment of a prenyl moiety at the cysteine residue of the CAAX 

motif (20, 21). The prenyl moiety are derivates of mevalonic acid synthesized via the cholesterol 

biosynthetic pathway, and include a 15-C farnesyl or a 20-C geranylgeranyl group. The 

attachment to the cysteine residue is catalyzed by prenyl tranferases namely, farnesyl transferase 

(FTase)-I and geranylgeranyl transferase (GGTase)-I and II. Following prenylation, the three 

amino acids (-AAX) adjacent to the prenylated cysteine are cleaved by Ras-converting enzyme, 

which exposes the carboxylate ion of the prenylated cysteine. This is followed by a 

carboxymethylation that involves methylation of the carboxylate group by isoprenylcysteine-O-

carboxymethyl transferase (ICMT). Additionally, specific G-proteins also undergo palmitoylation 

at other cysteine residues. These modifications have been shown to increase hydrophobicity of 

the candidate G-proteins, that increases their localization in the membrane fraction of the cell 

required for optimal interaction with their respective effector proteins.  

Role in glucose stimulated insulin secretion (GSIS): 

Earlier studies in the β-cell have shown that depletion of intracellular GTP pools impairs 

physiological insulin secretion (16, 17). Further investigations, focusing on Rho family GTPases 

including Rac1, have demonstrated that loss of function results in impairment in insulin secretory 

response to ambient glucose concentrations. Studies by Asahara and associates have utilized a 

β-cell specific Rac1 knockout model (22). They reported that these animals, when fed on a normal 

diet showed decreased GSIS. Furthermore, when these animals were fed on high-fat diet, signs 

of impaired glucose tolerance and GSIS were observed. Using pancreatic islets isolated from 

these animals and INS-1 cell line, they reported significant defects in GSIS and F-actin remodeling 
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upon loss of Rac1 function. Furthermore, studies in our own laboratory, have shown that siRNA-

mediated depletion of Rac1 results in impaired GSIS (23). 

Rac1 is activated by dissociating with RhoGDI and its interaction with GTP. Several GEFs 

have been identified that regulated Rac1 function including Tiam1, Vav2, Trio (18, 23). Rac1 is 

also known to undergo geranylgeranylation that increases its membrane association and 

substrate specificity. Previous investigations in our laboratory have utilized pharmacological 

agents to block Rac1 activity and demonstrated the role of Rac1 in physiological insulin secretion 

and cytoskeletal remodeling in the β-cell (24, 25). The various pharmacological inhibitors used 

are depicted in Figure 1-7.  

 

 

 

 

 

 

 

 

NSC23766, synthesized by Gao and associates, blocks Tiam1-mediated Rac1 activation, 

and has been extensively used in multiple cell types to block Rac1 function (26). Studies from our 

laboratory, have utilized this compound and reported a significant drop in insulin secretory 

response to stimulatory glucose (24). Ehop-016, synthesized by Vlaar and associates, disrupts 

Vav2-mediated Rac1 activation. In a recent study from our laboratory, F-actin depolymerization 

was visualized using GFP-tagged LifeAct plasmid and live-cell imaging (25). We reported that 

Figure 1-7: Pharmacological inhibitors of Rac1 [Modified from Nagase M et al. ref (33)] 
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glucose stimulation results in depolymerization of F-actin filaments, which is inhibited in presence 

of Ehop-016, thereby providing compelling evidence indicating the involvement of Rac1 in 

cytoskeletal remodeling and insulin secretion.  

Besides NSC23766 and Ehop-016, which target GEF-mediated Rac1 activation, we 

utilized a novel inhibitor of Rac1, EHT1864, which blocks Rac1 function in a GEF-independent 

manner (27). This compound, designed by Desire and associates, binds to Rac1 with a higher 

affinity than GTP/GDP, thereby retaining Rac1 in an inert, inactive state (28). This compound has 

been used in multiple cell types to examine the role of Rac1 in normal cell physiology and 

pathology (29-33).  

Additionally, previous published evidence have also shown that Rac1 geranylgeranylation 

is critical for GSIS, since presence of GGTI-2147, a specific inhibitor of geranylgeranyl 

transferase, blocked membrane association of Rac1 and insulin secretion in INS-1 832/13 cells 

(34). Furthermore, when INS-1 832/13 cells were transfected with a dominant negative mutant of 

the alpha subunit of FTase and GGTase-I, insulin secretion was significantly blocked. These data 

have together confirmed the requisite role of prenylation of G-proteins including Rac1 in 

physiological insulin secretion from the β-cell. 

Phagocyte-like NADPH oxidase (Nox2) and ROS generation: 

The NADPH oxidase is a family of membrane-associated enzymes that catalyze oxidation 

of cytosolic NADPH and one electron reduction of molecular oxygen, resulting in the generation 

of superoxide. This family of enzymes includes seven members: Nox1, Nox2, Nox3 Nox4, Nox5, 

Duox1, Duox2 (35, 36), which are composed of different membrane and cytosolic protein 

components. The phagocyte-like NADPH oxidase (Nox2) is composed of several membrane 

(gp91phox and p22phox) and cytosolic (p47phox, p67phox, p40phox and Rac1) components. 

Upon stimulation, the cytosolic components translocate to the membrane thereby, completing the 

holoenzyme assembly and activation of the holoenzyme. The superoxide generated from 

molecular oxygen is the major contributor of reactive oxygen species (ROS) and can be converted 
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to other ROS by superoxide dismutases. Pancreatic β-cells have known to be expressing Nox2 

subunits, which represents a major source of extra-mitochondrial ROS (36, 37). Recent studies 

have shown that a tonic increase in ROS in the pancreatic β-cell is required for GSIS. Although 

the mechanism is still poorly understood, evidence suggests that ROS act as second messengers 

and are known to regulate several downstream processes including mobilization of Ca and 

glucose metabolism (38, 39). Interestingly, studies by Morgan et al. have demonstrated that 

inhibition of Nox2 using DPI or by downregulating expression of p47phox using an anti-sense 

oligonucleotide, resulted in impaired insulin secretion in rat pancreatic islets when perfused with 

stimulatory glucose concentrations (40). Studies in our own laboratory, have shown that inhibition 

of Nox2 (apocycin, DPI, siRNA p47phox) blocks glucose-induced ROS generation in insulin 

secreting INS-1 832/13 cells. Furthermore, we demonstrated that glucose stimulation results in 

increased Nox2 enzyme activity that is sensitive to apocynin. Additionally, studies using siRNA 

and pharmacological approaches demonstrated that prenylation is critical for GSIS. In this 

context, pharmacological inhibitors of prenylation (FTI-277 and GGTI-2147) blocked glucose-

induced ROS generation, implicating the role of Nox2-ROS signaling in GSIS (41).  

Reactive oxygen species in pancreatic β-cell dysfunction: 

Oxidative stress has been demonstrated to be a causal factor in the onset and 

development of various disorders including diabetes and its complications (42-44). Earlier studies 

by Lenzen et al. have examined the expression of various antioxidant enzymes in pancreatic islets 

and compared with other tissues in albino mice (45). Their studies revealed that expression levels 

of anti-oxidant enzymes such as glutathione peroxidase, Cu/Zn SOD and Mn SOD in the islet 

were significantly lower compared to other tissues. Studies in islets isolated from ob/ob mice, in 

which β-cells constitute about 90% of the total cell composition, have also shown low expression 

of antioxidant enzymes. The investigators concluded that pancreatic β-cells possess far lower 

levels of antioxidant compared to other endocrine and non-endocrine tissues. Several other 

studies have strongly suggested that pancreatic β-cells are highly susceptible to oxidative 
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damage and oxidative stress could be the causal mechanism leading to pancreatic β-cell death 

as seen in Type1 and Type2 diabetes (46, 47). 

 

 

Although, low levels of ROS are requisite for GSIS and normal β-cell physiology, excess 

sustained activation of Rac1-Nox2 and associated oxidative stress can lead to β-cell demise 

under conditions of metabolic stress (48-50). Studies by Yuan and associates have demonstrated 

that chronic exposure of clonal β-cells NIT-1 cells to high glucose and free-fatty acids results in 

increased Nox2-mediated ROS generation culminating in cell dysfunction and apoptosis, which 

is prevented in cells transfected with siRNA-Nox2 (51). Along these lines, previous observations 

from our own laboratory have utilized inhibitors of Nox2 (DPI, Apocynin), Rac1 activation 

(NSC23766) and prenylation (GGTI-2147) and demonstrated the role of Rac1-Nox2 signaling in 

increased ROS generation in β-cells exposed to high glucose, palmitate and inflammatory 

cytokines (50, 52). Furthermore, published evidence from our laboratory have demonstrated 

increased expression and activation of Rac1 and Nox2 subunits in islets derived from the Zucker 

Figure 1-8: Functinal assembly and activation of NADPH oxidase 2 [Modified from Kowluru A, ref. 
(18)] 
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diabetic fatty (ZDF) rat, a model for type 2 diabetes, in normal human islets exposed to 

hyperglycemic conditions, and in islets from type2 diabetic human donors (49). Further studies in 

INS-1 832/13 cells, ZDF islets and diabetic human islets have suggested significant increase in 

stress kinase JNK1/2 activation and caspase-3 activation. Together, these studies provide 

evidence suggesting that exposure of β-cells to diabetic conditions results in increased Rac1-

Nox2 activity and the associated oxidative stress causes activation of downstream apoptotic 

stress kinase pathway, culminating in mitochondrial dysfunction and β-cell death. 

Stress-activated protein kinases/Mitogen-activated protein kinases (SAPKs/MAPKs) 

The mitogen-activated protein kinase family are serine-threonine protein kinases that 

regulate and integrate multiple intracellular signaling processes. These include 14 MAPKs known 

to be present in mammalian cells and are classifies into the conventional MAPKs and atypical 

MAPKs. The most widely studied group of MAPKs are the conventional the extra-cellular-regulate 

kinases (ERKs), c-jun NH2-terminal kinase (JNK) and p38MAPK isoforms. These conventional 

MAPKs are regulated by distinct MAPK signaling cascades composed of three components: 1. 

MAPK kinase kinase (MAPKKK); 2. MAPK kinase (MAPKK) and 3. MAPK.  

In the presence of an extracellular stressor, MAPKKK are activated via interaction with a 

small G-protein including Rac1 (53). MAPKKK then phosphorylate and activate MAPKK, which in 

turn activate MAPKs. MAPKs are activated by phosphorylation on Threonine and Tyrosine 

residues located in the conserved activation loop of the kinase domain. Once activated MAPKs 

interact and phosphorylate several downstream kinases such as the MAPK-activated protein 

kinases (MAPKAPK) such as RSK1-4 and MSK1/2 and transcription factors such as Elk-1, c-jun, 

ATF3 and p53 (54). The activation of downstream signaling cascades by MAPKs mediates the 

cellular responses to the stress stimuli including gene expression, mitosis, cell differentiation and 

apoptosis. In addition to their essential role in a wide range of cellular functions, emerging 

evidence implicates MAPK pathways in the pathogenesis of human diseases including diabetes, 

cancer and neurodegenerative diseases (55).   
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Unlike the conventional MAPKs, the atypical MAPKs are not regulated by the three-tier 

kinase signaling cascade. The regulation and functions of these atypical MAPKs need to be 

further examined (56). 

 

Extracellular signal-regulated kinases (ERK1/2): 

This group of MAPKs includes several isoforms including ERK1 to ERK8, among which 

the ERK1/2 module is the most extensively characterized. ERK1/2 exhibit ~83% homology and 

are phosphorylated on Tyr and Thr residues in response to extracellular stimuli. Several upstream 

regulators have been identified that are involved in the ERK MAPK pathway including the 

MAPKKK Raf, and MAPKK MEK1/2 (54). The activation pathway is initiated by ligand binding to 

cell surface receptors such as tyrosine kinase receptors, which leads to dimerization of the 

receptor and autophosphorylation of the intracellular domain and binding with protein with Src-

homology2- domain (e.g. Grb2) (57). The resulting signaling steps lead to the activation of Ras 

that interacts and activates Raf, which in turn activates ERK1/2 via MEK1/2. ERK1/2, once 

Figure 1-9: The conventional MAPK signaling pathways [Modified from Cargnello M et al. ref (53)] 
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activated, has been shown to localize and interact with several nuclear and cytosolic substrates. 

The major functions of this module include cell cycle progression, cell growth and proliferation. 

Several studies have implicated alterations in the ERK1/2 pathway in tumor development. For 

example, in certain cancer cells, constitutive activation of ERK signaling induced by 

overexpression of receptor tyrosine kinase or Ras/Raf mutations, has been associated with 

cancer development (53, 57). Therefore, the ERK pathway is being extensively studied for drug 

discovery and pharmacological inhibitors of Ras, Raf and MEK are currently under development 

to prevent tumor progression.  

c-jun NH2-terminal kinases (JNK): 

The three isoforms of JNK identified in mammalian cells include JNK1/2/3, which share 

~85% homology. While JNK1/2 are ubiquitously expressed in multiple cells, JNK3 seems to be 

expressed in neuronal tissues, testis and cardiomyocytes (58). These are activated in response 

to stress stimuli including inflammatory cytokines, oxidative stress, ionizing radiations and growth 

factor deprivation. Activation is initiated by upstream MAPKKK including MLK1-4, MEK1-4 and 

ASK1/2, which phosphorylate MAPKKs MKK4 and MKK7. MKK4/7 then activate JNKs by dual-

phosphorylation on Thr and Tyr residues within the conserved Thr-Pro-Tyr motif in the activation 

loop.  Once activated, JNK has been shown to phosphorylate and activate c-jun, promotes AP-1 

complex formation and thereby mediates transcription of genes containing AP-1 binding sites 

(59). It has also been reported that JNKs interact with other transcription factors including p53, 

ATF-2, c-Myc, STAT3 (60). Mice lacking JNK1/2/3-encoding genes showed significant defects in 

apoptosis and immune responses (60). In addition, inactivation of JNK1/2 has been associated 

with decreased response to DNA-damaging agents and UV radiation in cancer cells, implying the 

involvement of the JNK module in apoptosis (61). JNKs are also involved in cell metabolism, 

immune responses, cytokine production and actin reorganization (62-64). The JNK signaling 

pathway has been implicated in the pathologies of several neurological disorders including 

Alzheimer’s and Parkinson’s disease (55).  
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p38 MAPK: 

This group of MAPK comprise of four splice variants including p38α, p38β, which are 

ubiquitously expressed in mammalian cells, p38ɣ and p38δ which are differentially expressed 

(53). These are activated by several extraneous stress stimuli including oxidative stress, UV 

radiation, inflammatory cytokines and hypoxia (65). Several upstream regulators including Rho 

family GTPases Rac1 and Cdc42, GPCRs and adaptors proteins are known to initiate the 

pathway, by recruiting MAPKKKs involved in p38MAPK activation. These MAPKKKs, which are 

common for JNK and p38, phosphorylate MKK3/6 which are involved in the activation of 

p38MAPK isoforms by dual phosphorylation at specific Thr-Gly-Tyr motifs in the activation loop. 

Activated p38MAPK then interacts with several cytoplasmic and nuclear substrates which mediate 

cellular responses including inflammation, cell cycle arrest, differentiation and apoptosis (65).  

Functions of p38MAPK:  

1. p38MAPK in cell cycle regulation: p38MAPK is activated in response to stress stimuli 

such as DNA damage , oxidative stress and osmotic stress. In response to DNA damage, 

p38MAPK has been shown to play a negative modulatory role in cell cycle progression at 

G2/M transition by several mechanisms (66, 67). This is initiated by detection of DNA 

damage by serine/threonine kinases that act as DNA damage sensors, including ATM and 

ATR kinases. These sensor DNA repair proteins are known to interact with Tau proteins 

that act as MAPKKK and activate MKK3/6, which in turn phosphorylate p38MAPK. 

p38MAPK is known to interact and phosphorylate p53 transcription factor, which induces 

the transcription of target genes namely p21 and Gadd45a, which are involved in cell cycle 

arrest at G2/M phase (66). In addition, p38MAPK can also induce G1/S cell cycle 

checkpoint in response to oxidative stress and hypoxia by several mechanisms including 

expression of regulatory proteins such as p16INK4a and p19ARF (67).  

2. p38MAPK in cell differentiation: Several studies have implicated the positive and 

negative modulatory roles of p38MAPK in cellular differentiation. For example, it has been 
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suggested that p38MAPK induces cell cycle arrest in myoblasts which is followed by a 

gradual increase in expression of muscle-specific genes, thereby, inducing myocyte 

differentiation into myotubes (68). This is induced by increased activity of transcriptional 

factors and chromatin remodeling. In addition, p38MAPK has also been implicated in 

osteoclast differentiation initiated by RANKL signaling, by the activation of NFATc1 and 

NF-κB transcription factors (69). Furthermore, studies in intestinal cells revealed that 

p38MAPK is activated in intestinal cells induced to differentiate and inhibition of p38MAPK 

blocks transcription of cell differentiation markers (70). These effects were found to be 

coupled with the increased activity of CDX2/3 which are nuclear transcription factors, 

induced by their interaction with p38MAPK. Apart from studies indicating the role of 

p38MAPK in inducing cell differentiation, studies in adipocytes indicate inhibitory role of 

p38MAPK in adipocyte differentiation (71, 72). Increased adipogenesis results in adipose 

tissue expansion and obesity. Studies by Aouadi and associates have revealed that both 

diet-induced and genetically obese mice exhibit decreased p38MAPK activity, resulting in 

increased adipogenesis (71). Together, these observation suggest tissue-specific 

regulatory role of p38MAPK in cellular differentiation.  

3. p38MAPK in cell survival and apoptosis: Evidence from multiple cell types indicate that 

p38MAPK exhibits cell-specific anti- and pro-apoptotic functions by interacting with its 

diverse substrate proteins (53). Evidence from studies in certain cancer cells showed a 

pro-survival effect of p38MAPK activation. For example, treatment of Jurkat cells and T 

lymphocytes with p38MAPK inhibitor augmented the cytotoxic effect of 8-

methoxypsoralen and UV-radiation treatment, thereby increasing the efficacy of this 

therapy (73). Furthermore, studies by Gutiérrez-Uzquiza et al. have revealed a novel 

mechanism by which p38MAPK may play a role in cell survival in response to oxidative 

stress, by mediating the transcription of anti-oxidant genes including superoxide 

dismutases and catalase (74). Although some observations indicate anti-apoptotic 
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function of p38MAPK, a majority of studies have demonstrated its pro-apoptotic role. 

Oxidative stress has been shown to be a major activator of p38MAPK in multiple cell types 

including pancreatic β-cells (75), neurons (76) and cardiac myocytes (77). Furthermore, 

treatment of cancer cell lines with All-trans-retinoic Acid activates p38MAPK in a Rac1-

dependent manner, which in turn activates MAPKAPK2 and mediates apoptosis (78). 

Studies by Bulavin et al. have demonstrated that p38MAPK is involved in the activation of 

p53 tumor suppressor pathway, where p38MAPK phosphorylates p53 at several residues 

at it N-terminus (79). This causes p53 to dissociate from MDM2, a negative modulator of 

p53 function, protecting p53 from proteosomal degradation and allowing its function as a 

transcriptional factor. These events lead to the expression of pro-apoptotic target genes 

of p53, thereby inducing cell death.  

p53 tumor suppressor 

p53 tumor suppressor is a transcription factor belonging to a unique family of proteins 

which also includes p63 and p73 (80, 81). Encoded by the TP53 gene, p53 is commonly referred 

to as the “guardian of the genome” and is involved in inducing anti-proliferative cellular responses 

to DNA damage including cell cycle arrest, cellular senescence, DNA repair and apoptosis (82). 

These functions are mediated by the binding of activated p53 to the DNA, thereby promoting the 

transcription of several target genes (83). Evidence from mice lacking p53 demonstrated its critical 

role as a tumor suppressor, since p53 -/- mice spontaneously develop neoplastic tumors (84). 

TP53 was initially identified as an oncogene, since p53 was found to be overexpressed in most 

tumor cells. However, later studies identified that these tumor cells expressed a missense mutant 

of p53 and the oncogenic nature resulted from loss of p53 function (85, 86). Nearly 50 % of all 

human cancer types exhibit mutation or loss of p53 function, where it is inactivated either by 

mutation in TP53 gene, or mutations in genes encoding regulatory proteins that interact with p53 

(87). Several reports in multiple cell types have provided insights into the post-translational 
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modifications involved in the p53 signaling pathway and have identified the regulatory proteins 

involved in the modulation of p53 function (88-91).  

Structure of p53: 

TP53 gene, located on the small arm of chromosome 17, encodes a nuclear 

phosphoprotein containing 393 amino acids composed of several structural and functional 

domains (83, 89, 92). These are: 1) N-terminal transactivation domain (TAD) – divided into 

subdomains TAD1 (1-40 amino acid residues), TAD2 (40-61 amino acid residues) and a proline-

rich region (61-94 amino acid residues); 2) Central DNA-binding domain (102-292 amino acid 

residues) and 3) C-terminal region – containing a tetramerization domain (324-355 amino acid 

residues), nuclear export and import signal sequences and a carboxyl-terminal regulatory domain 

(363-393). The N-terminal TAD is mostly involved in transcriptional activation and interacts with 

several regulatory factors including MDM2 and p300 (90, 91). The central DNA-binding domain 

mediates site-specific binding of p53 to the DNA (93). The C-terminal domain containing the 

tetramerization domain is required for the binding of p53 monomers to form tetramers that 

possess a greater affinity for DNA-binding sites (94). Tetramerization also has been shown to 

promote nuclear localization as the nuclear export sequence is masked in p53 tetramers (95). 

The carboxy-terminal has also been implicated in regulating DNA binding and tranactivation of 

p53 target genes (96, 97). p53 also consists of nuclear localization (NLS) and nuclear exclusion 

sequences (NES) which regulate its nucleo-cytoplasmic shuttling (98, 99). 

Figure 1-10: The structural and functional domains of the p53 tumor suppressor 

[Modified from Joerger AC et al. ref (92). 
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Regulation of p53 function 

p53 expression levels and activity are maintained relatively low in the absence of a stress 

stimuli by several mechanisms (100). Mice lacking p53 were found to be developmentally normal, 

suggesting that p53 function is not necessary for normal cell physiology and functioning (84). One 

of the mechanisms involved in down regulation of p53 function is mediated via its interaction with 

MDM2 (101). MDM2 is an E3 ubiquitin ligase, encoded by a p53-inducible gene, and plays a 

critical role in suppressing p53 function in unstressed cells (90, 101, 102). Studies in mice lacking 

MDM2 revealed that deletion of MDM2 gene results in embryonic lethality which is however, 

rescued by loss of p53 function (103). MDM2 binds to p53 at the N-terminus TAD thereby 

suppressing activation of gene transcription. MDM2 also ubiquitinates p53, causing its 

degradation by the proteasomal system (104). Ubiquitination also causes the nuclear exclusion 

of p53 into the cytoplasm, where it is more susceptible for proteasomal degradation (105). This 

mechanism initiated by MDM2 expression induced by p53, represents an autoregulatory negative 

feedback loop that regulates the activity and levels of p53. However, in response to cellular 

stressors such as DNA damage, oxidative stress and hypoxia, p53 undergoes several post-

translational modification that mediate its functional activation and stabilization (88). These 

include phosphorylation, acetylation, ADP-ribosylation, sumoylation and ubiquitylation that occur 

at several amino acid residues present mostly in the N-terminal and C-terminal domains. Among 

these modifications, phosphorylation and acetylation have been implicated as the major 

contributors to functional activation and stabilization of p53 tetramers (106, 107). The sites and 

importance of these modifications in the regulation of p53 function in various models of human 

disease are currently under investigation.  
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p53 in apoptosis  

In the presence of stress stimuli, p53 undergoes post-translational modification that 

stabilize p53 tetramers and mediate their functional activation and nuclear localization. These p53 

tetramers then are able to bind with specific DNA sequences and activate the transcription of 

several genes that mediate various cellular responses (108, 109). This is mediated by the 

interaction with p53 response elements in the DNA that bind with p53 to activate transcription of 

target genes (108). p53 is also known to interact with other transcriptional regulators such as p300 

acetyl transferase (91). This results in acetylation of p53 and histones surrounding the DNA 

binding sites, thereby increasing the DNA-binding activity. The gene transcription products 

Figure 1-11: Several post-translational modifications induced by regulatory factors that modulate 
p53 function [Modified from Bode AM et al. ref (89)] 
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induced by p53 include p21, Gadd45, 14-3-3δ, Fas, Bax, PUMA and Noxa which are known to 

mediate cell cycle arrest and apoptosis, in response to stress stimuli (110-114). 

In the presence of stress stimuli, p53 is known to induce cell apoptosis by several 

mechanisms including the extrinsic and the intrinsic apoptotic pathway, and by inducing genes 

that suppress cell survival signaling (83). The extrinsic pathway involves the binding of specific 

extracellular ligands (e.g., Fas ligand) to death receptors (e.g., Fas) which leads to the 

accumulation of FADD and initiator caspases causing apoptosis (80). For example, the cytotoxic 

effects of bleomycin in hepatoma cells is mediated by increased nuclear accumulation of p53 and 

increased expression of Fas receptor (115). It has also been suggested that p53 mediates 

membrane translocation of Fas receptor from the Golgi complex (116). Additionally, p53 is also 

known to induce DR4 and DR5 death receptors which are involved in TNF-related apoptosis-

inducing ligand (TRAIL) (117, 118). Moreover, a majority of the p53-inducible genes are involved 

in the intrinsic apoptotic. p53 activates the transcription of pro-apoptotic proteins belonging to the 

Bcl2 family, which are modulators of mitochondrial membrane potential. Bcl2 family proteins can 

be classified intro three subfamilies: 1) Anti-apoptotic Bcl2; 2) Pro-apoptotic Bax; and 3) Pro-

apoptotic BH3-only (Bcl2 homology-3) proteins. The pro-apoptotic Bax gene promoter region has 

been shown to possess p53 binding sites. Bax increases mitochondrial membrane permeability 

which releases cytochrome c into the cytoplasm and activates caspases and apoptosis. Similarly, 

an important target gene for p53 is the p53-upregulated modulator of apoptosis (PUMA), which is 

a BH3-only apoptotic protein. The PUMA gene, consisting of high affinity p53-binding sites, 

encodes for two isoforms which are known to upregulate Bax activity thereby activating apoptosis 

(113). Another BH3-only protein regulated by p53 is Noxa, which also promotes Bax activity and 

apoptosis (114). 
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Figure 1-12: Mechanisms of p53-induced apoptosis [Vousden KH et al. ref (83)] 
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Hypothesis 

Our preliminary data and above literature review indicate that excess generation of ROS 

by Rac1-Nox2 enzyme complex causes oxidative stress, which leads to the activation of 

downstream apoptotic stress kinases. Despite the above evidence suggesting the involvement of 

Rac1-Nox2 in β-cell dysfunction under diabetic conditions, the downstream signaling pathways 

need to be further elucidated. The central objective of my dissertation project is to examine the 

role of Rac1 and Nox2 in the generation of oxidative stress, leading to the activation of pro-

apoptotic factors, resulting in pancreatic β-cell death under glucotoxic conditions. Using 

pharmacological approaches, we propose to examine the regulation of stress kinase p38MAPK 

and p53 pathways by Rac1-Nox2 enzyme complex in INS-1 832/13 cells, rodent and human 

pancreatic islets. Furthermore, we will extend these studies in in vivo models of obesity, insulin 

resistance and pancreatic β-cell dysfunction (Zucker diabetic fatty rat). 

The proposed studies will test the hypothesis that (i) chronic exposure of pancreatic β-

cells to glucotoxic conditions leads to sustained activation of Rac1-Nox2 holoenzyme and the 

resulting oxidative stress activate the p38MAPK and p53 signaling pathways, culminating in the 

activation of apoptotic pathways and β-cell death; and (ii) therapeutic intervention of Rac1-Nox2 

signaling cascade prevents pancreatic β-cell death, induced by glucotoxic conditions, and onset 

of diabetes. 

I will accomplish these goals by conducting studies under the following three specific aims: 

Specific Aim 1: To determine if Rac1/Nox2 derived ROS leads to the activation of p38MAPK, 

under glucotoxic conditions 

Specific Aim 2: To demonstrate the role of p53 phosphorylation in mediating the effects of 

Rac1/Nox2 under glucotoxic conditions 

Specific Aim 3: To examine the Rac1-p38MAPK-p53 pathway in human pancreatic islets 

exposed to glucotoxic conditions and in whole animal models of pancreatic β-cell dysfunction 
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Figure 1-13: Proposed working model for Rac1-Nox2-induced oxidative stress and activation of 
p38MAPK-p53 signaling pathway in pancreatic β-cells under glucotoxic conditions: We propose 
that chronic exposure of β-cells to elevated glucose concentrations leads to sustained activation of Rac1-
Nox2 holoenzyme and oxidative stress, which in turn activates p38MAPK and p53 tumor suppressor. 
This leads to activation of p53-target gene transcription, which ultimately induce β-cell apoptosis. 
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Table 1-1: List of pharmacological inhibitors utilized to target Rac1, Nox2 and p38MAPK 

 

 

 

Pharmacological 
agent 

Target 
Mechanism of 

action 
Functional 

Consequence 

gp91-ds-tat Nox2 

Prevents 
association of 
p47phox with 
gp91phox 

Inhibition of Nox2 
holoenzyme 
assembly activation 

NSC23766 Rac1 
Blocks Tiam1-Rac1 
interaction 

Inhibition of Tiam1-
mediated Rac1 
activation 

Ehop-016 Rac1 
Blocks Vav2-Rac1 
interaction 

Inhibition of Vav2-
mediated Rac1 
activation 

EHT1864 Rac1 
Prevents GDP/GTP 
association of Rac1 

Inhibition of Rac1 
function 

Simvastatin 
HMG CoA 
reductase 

Inhibits the 
isoprenoid 
biosynthetic 
pathway 

Decreased protein 
prenylation 

GGTI2147 GGTase-I  
Blocks protein 
geranylgeranylation  

Decreased protein 
geranygeranylation 

2-bromopalmitate 
Protein acyl 
transferases 

Blocks protein S-
palmitoylation 

Decreased protein 
palmitoylation 

SB203580 p38MAPK 
Blocks kinase 
activity of p38MAPK 

Inhibition of 
p38MAPK function 
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CHAPTER 2: MATERIALS AND METHODS 

Chemicals and antibodies:  

Rabbit polyclonal antibody for phospho-p38MAPK (Thr 180/Tyr 182) and total-p38MAPK 

were obtained from Santa Cruz Biotechnology [Santa Cruz, CA]. Rabbit monoclonal antibody for 

phospho-p53 and total-p53 was purchased from Cell Signaling Technology [Danvers, MA]. Mouse 

monoclonal antibodies for Phospho-ATM (ser-1981) and total-ATM were obtained from Abcam 

[Cambridge, MA]. NSC23766 and GGTI-2147 were obtained from Calbiochem [San Diego, CA]. 

EHT1864 was from R&D systems [Minneapolis, MN]. EHop-016 was kindly provided by Dr. 

Cornelis Vlaar, University of Puerto Rico [San Juan, PR]. Scrambled gp91-ds-tat (inactive) and 

active gp91-ds-tat were from Anaspec, Inc. [Fremont, CA]. ). IRDye® 800CW anti-rabbit and anti-

mouse secondary antibodies were obtained from LICOR [Lincoln, NE]. Glucose, 2-

Bromopalmitate (2-BP), 2’, 7’-dichlorofluorescein diacetate (DCFDA), N,-N’-dimethyl-9,-90-

bisacridiniumdinitrate (lucigenin) were purchased from Sigma–Aldrich [St. Louis, MO]. All other 

reagents were obtained from Sigma (St. Louis, MO). 

Kits:  

Rat insulin ELISA kit was purchased from American Laboratory Products Co [Windham, 

NH]. Rac1 activation G-LISA kit was from Cytoskeleton Inc. (Denver, CO). NE-PER® Nuclear and 

Cytoplasmic Extraction Reagents were purchased from Thermo Scientific (Waltham, MA). Cell 

Death Detection ELISA® were purchased from Sigma (St. Louis, MO). Dead Cell Apoptosis Kit 

with Annexin V Alexa Fluor® 488 & Propidium Iodide (PI) was from ThermoFischer Scientific. 

Insulin secreting INS-1 832/13 cells and culture conditions:  

INS-1 832/13 cells were kindly provided by Dr. Chris Newgard, Duke University Medical 

Center [Durham, NC]. Cells were cultured in RPMI-1640 medium containing 10 % fetal bovine 

serum (FBS) supplemented with 100 IU penicillin and 100 IU/ml streptomycin, 1 mM sodium 

pyruvate, 50 mM 2-mercaptoethanol and 10 mM HEPES (pH 7.4) at 37 ° C and 5 % CO2 in a 

humidified incubator. Cultured cells were sub cloned twice weekly following trypsinization and 
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passages 53–61 were used for the studies. Cells were incubated in low glucose-low serum media 

(LG-LS; 2.5 mM glucose; 2.5 % heat-inactivated FBS) overnight, prior to glucose treatments with 

low glucose (LG; 2.5 mM) and high glucose (HG; 20 mM) for 24 hours in the absence or presence 

of pharmacological agents as indicated in the text. At the end of the incubation time, cells were 

rinsed with PBS and lysed using radio immunoprecipitation assay (RIPA) buffer supplemented 

with containing protease inhibitor cocktail, 1 mM NaF, 1 mM PMSF and 1 mM Na3VO4. 

Rodent and human islets and culture conditions:  

Sprague-Dawley male rats (6 to 8 weeks old) were purchased from ENVIGO [Indianapolis, 

IN]. Male Zucker Diabetic Fatty (ZDF) rats (9 to 11 weeks old) and their age-matched lean controls 

(ZLC) were obtained from Charles River Laboratories [Wilmington, MA], and fed on Purina Diet 

5008. All animals were maintained in a 12-h light/dark cycle with free access to water and food. 

Hyperglycemia in the diabetic animals was confirmed by measuring blood glucose levels by tail 

vein nick puncture using Freestyle glucometer from Abbott Diabetes Care, Inc [Alameda, CA]. All 

animal protocols were reviewed and approved by Institutional Animal Care and Use Committee 

at Wayne State University. Pancreatic islets from Sprague Dawley, ZDF and ZLC rats were 

isolated using collagenase digestion method as described in (41, 49). Briefly, collagenase solution 

(0.45 mg/ml) is injected into the common bile duct and inflated pancreata are excised. These were 

then further digested in collagenase (0.9 mg/ml) at 37 ° C followed by density gradient purification 

using Histopaque 1077. The isolated pancreatic islets were then incubated overnight in in RPMI-

1640 medium containing 10% heat-inactivated FBS supplemented with 100 IU/ ml penicillin and 

100 IU/ml streptomycin, 1 mM sodium pyruvate and 10 mM HEPES [pH 7.4]. Pancreatic islets 

isolated from ZLC and ZDF rats were rinsed in PBS and lysed in RIPA buffer supplemented with 

protease inhibitor cocktail, 1 mM NaF, 1 mM PMSF and 1 mM Na3VO4. Islets isolated from normal 

rats were further incubated in the presence of LG and HG for 24 hours in the absence or presence 

of pharmacological inhibitors as indicated in the text. Islets were then rinsed in PBS and lysed in 

RIPA buffer as described above. Human islets [~90-95% purity] from two normal [41-year-old 
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male and 63-year-old male] donors and culture media was purchased from Prodo Laboratories, 

Inc. [Irvine, CA]. Islets were then treated with LG (5.8 mM) and HG (30 mM) for 24 hours, 

harvested and lysed in RIPA buffer. 

Glucose-stimulated insulin secretion studies: 

For short-term insulin release assays, INS-1 832/13 cells were starved overnight in LG-

LS media and then incubated in Krebs-Ringer Bicarbonate buffer (KRB, pH 7.4) for 1 hour. Cells 

were then stimulated with either 2.5 mM LG or 20 mM HG for 45 min at 37 ° C, and the insulin 

released into the supernatant was quantified using a sandwich ELISA kit, according to the 

manufacturer’s instructions. Briefly, 5 µL of the supernatants collected were loaded onto 

microplates pre-coated with insulin monoclonal antibody. The microplates are then incubated at 

room temperature on a shaker at 700-900 rpm. After washing, TMB substrate is added to the 

microplate wells and incubated on the shaker at room temperature for another 15 minutes. The 

reaction is then stopped using a Stop solution provided, and absorbance is read at 450 nm 

wavelength (24, 25).  

For long-term insulin release assays, following overnight starvation, cells were incubated 

with glucose (2.5 mM, LG and 20 mM, HG) for 24 h. Cells were then pre-incubated in KRB buffer 

and further stimulated with either LG or HG for 45 min at 37 ° C. The supernatants were then 

collected and insulin released was quantified using the ELISA kit (119). 

Quantification of ROS: 

Following overnight starvation in LG-LS, INS-1 832/13 cells were incubated in the 

presence of LG and HG in the absence and presence of gp91-ds-tat (2.5µM) or its inactive 

scrambled peptide analog (2.5µM) for 24 hours. Cells were then rinsed in PBS, lysed and 

homogenized in PBS supplemented with 1mM PMSF and 1mM EDTA. 20-30 ug of protein was 

then incubated with 2 µM 2’,-7’-dichlorofluorescein diacetate (DCFDA) for 10-15 minutes. The 

resulting fluorescence was then measured at 485nm and 530nm as excitation and emission 

wavelengths (49, 120). 
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Nox2 activity assay: 

INS-1 832/13 cells treated with LG and HG in the absence and presence of gp91-ds-tat 

(2.5µM) or its inactive scrambled peptide analog (2.5µM) for 24 hours, were rinsed and 

homogenized in PBS supplemented with 1mM PMSF and 1mM EDTA. 200-500ug protein was 

then incubated with 20 µM lucigenin (N, N-dimethyl-9, 9’-biacridinium dinitrate) as electron 

acceptor for 2 min followed by the addition of NADPH (100 μM). The resulting chemiluminescence 

was measured and Nox2 activity was expressed as nmoles of NADPH oxidized/min/mg of protein. 

Rac1 activation assay: 

INS- 832/13 cells treated with LG and HG as indicated in the text were washed in PBS 

and activated Rac1 was quantified using the GLISA kit according to the manufacturer’s 

instructions (49). Briefly, cells were lysed in the lysis buffer provided and lysates were clarified by 

centrifugation at 14,000 rpm for 1 min. Equal amounts of protein were loaded into the wells of a 

Rac1-GTP affinity plate and incubated for 30 min at 4 ° C. The wells were then washed with 

washing buffer and incubated with Rac1-specific primary antibody and HRP-conjugated 

secondary antibody. This was followed by incubation with horseradish peroxidase-detection 

reagent. The reaction was stopped using the stop buffer provided, and the absorbance was 

measured at 490 nm. 

Isolation of nuclear and non-nuclear fractions:  

Following incubation with LG and HG, cells were harvested in PBS and cell fractionation 

was done using NE-PER® Nuclear and Cytoplasmic Extraction Kit according to the 

manufacturer’s instructions. Briefly, pelleted cells were suspended in Cytoplasmic Extraction 

buffer-1 and incubated on ice for 10 min. After addition of buffer-2, cells were incubated on ice for 

1 min and centrifuged at 16,000g for 5 min to pellet the nuclei. The supernatants were collected 

as non-nuclear fractions. Nuclear proteins were then incubated with Nuclear Extraction buffer for 

40 min and centrifuged at 16,000g for 10 min. The supernatants were then collected as nuclear 

fractions. 
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Western Blotting: 

Lysate protein (30-40 µg) were separated by SDS-PAGE. Proteins were then transferred 

onto nitrocellulose membranes and blocked in 5 % non-fat dry milk solution in 1X TBST of 0.5 % 

Casein in 0.2X PBST. The membranes were then incubated with primary antibody directed 

towards the protein of interest in 5% milk or 0.1% Casein at room temperature for 1 hour or 

overnight at 4 ° C. After washing, the membranes were probed with the corresponding secondary 

antibodies. The antibody complexes were then detected using ECL detection kit (CareStream® 

Imaging system or HyBlot CL® Autoradiography Film) or Odyssey® Imaging Systems. The band 

intensities were quantified using CareStream® Molecular Imaging Software. 

Cell Death Assays:  

1. Dead Cell Apoptosis Kit with Annexin V & Propidium Iodide: INS-1 832/13 cells 

incubated with LG or HG for 24 h were first rinsed with PBS. Cells werestained with 

Annexin V/Propidium Iodide, according to Dead Cell Apoptosis Kit with Annexin V Alexa 

Fluor® 488 & Propidium Iodide kit protocol, for 15 minutes. Cells were then visualized 

under Olympus IX71 inverted fluorescence microscope using appropriate filters.  

2. Cell Death Detection: Following incubation with LG and HG for 24 hours, cells were 

washed with PBS and analyzed with Cell Death Detection ELISAplus according to the 

manufacturer’s instructions. Briefly, cells were lysed with the lysis buffer provided with 

the kit and centrifuged at 200g for 10 min. Supernatants were collected and incubated 

in streptavidin-coated plates with immuno-reagent containing anti-histone-biotin and 

anti-DNA-peroxidase for 2 h. Complexes were then detected photo-metrically using 

ABTS as substrate. Absorbance was measured at 405nm wavelength (reference 

wavelength at 490nm) and expressed as fold change over LG. 
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CHAPTER 3: GLUCOTOXIC CONDITIONS PROMOTE RAC1-NOX2-INDUCED 
ACTIVATION OF p38MAPK IN PANCREATIC β-CELLS 

 

Portions of this work have been published [copies of the published manuscripts are 

appended] 

 Sidarala V, Veluthakal R, Syeda K, Vlaar C, Newsholme P, Kowluru A. Phagocyte-

like NADPH oxidase (Nox2) promotes activation of p38MAPK in pancreatic β-cells 

under glucotoxic conditions: Evidence for a requisite role of Ras-related C3 

botulinum toxin substrate 1 (Rac1). Biochemical Pharmacology 2015; 95(4):301-

10. 

 Sidarala V, Veluthakal R, Syeda K, Kowluru A. EHT 1864, a small molecule 

inhibitor of Ras-related C3 botulinum toxin substrate 1 (Rac1), attenuates glucose-

stimulated insulin secretion in pancreatic β-cells. Cell Signalling 2015; 27(6):1159-

67. 

Glucose-stimulated insulin secretion (GSIS) is initiated by the entry of glucose into the 

pancreatic β-cell, followed by a series of metabolic events, leading to translocation of insulin 

granules towards the membrane for fusion and release. It is evident that small G-proteins such 

as Rac1, Cdc42 and Arf6 play a critical role in cytoskeletal remodeling to mediate migration of 

insulin-laden granules (8, 18). Studies in our own laboratory have demonstrated the requisite role 

of Rac1 activation and prenylation in glucose-induced cytoskeletal remodeling and insulin 

secretion (18, 23-25, 34). Inhibition of Tiam1, a guanine nucleotide exchange factor for Rac1, with 

NSC23766, resulted in marked reduction in GSIS (24). We recently have utilized Ehop-016, which 

targets Vav2-mediated Rac1 activation, and observed alterations in glucose-induced cytoskeletal 

remodeling and reduction in insulin secretion (25). Similar effects were observed in the presence 

of GGTI-2147, which blocks geranylgeranylation, demonstrating that Rac1 prenylation is also 

requisite for GSIS (34). Furthermore, studies from several laboratories have reported the 
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involvement of phagocyte-like NADPH oxidase (Nox2) and physiological levels of ROS in 

mediating GSIS. Studies by Leloup and associates have reported alterations in calcium 

mobilization and decreased GSIS in rat pancreatic islets, in presence of anti-oxidants (38). 

Additionally, studies by Morgan et al. have shown that inhibition of Nox2 function results in 

reduced insulin secretory response (36).  

Type 2 diabetes is characterized by insulin resistance in the peripheral tissues and 

impaired insulin secretion from the pancreatic β-cell. Exposure of pancreatic β-cells to elevated 

levels of glucose and free fatty acids (referred to as glucolipotoxicity) has been implicated to be 

the cause of several complications of diabetes, including loss of β-cell function (14, 15). In the 

context of β-cell dysfunction, several studies have reported increased activity of Rac1-Nox2 

enzyme complex, resulting in excess ROS generation in models of diabetes (49, 50, 120). Studies 

in the ZDF rat, a model for T2D, and human islets exposed to high glucose concentrations, have 

indicated marked increase in Rac1-Nox2 activity and ROS generation. Since it has been reported 

that pancreatic β-cells possess limited levels of anti-oxidant enzymes compared to other tissues, 

oxidative stress has been suggested as the causal mechanism of β-cell dysfunction under 

glucotoxic conditions (45). However, the downstream signaling pathways that mediate the 

deleterious effects of oxidative stress need to be further examined. 

Previous studies in our laboratory have implicated regulatory roles of stress kinases 

JNK1/2 and ERK1/2 in the ZDF rat. Studies have also implicated activation of p38MAPK in β-cells 

exposed to stress stimuli, culminating in the induction of apoptosis possibly mediated by p53 

tumor suppressor (121). Herein, we investigated the involvement of p38MAPK, in Rac1-Nox2-

ROS signaling under glucotoxic conditions, resulting in β-cell dysfunction. We examined if 

glucotoxic conditions promote activation of p38MAPK by dual-phosphorylation in INS-1 832/13 

cells and normal rodent islets. Furthermore, we utilized several pharmacological inhibitors to 

target the Rac1-Nox2 holoenzyme and observed their effects of p38MAPK activation.  
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Exposure of INS-1 832/13 cells to glucotoxic conditions results in cell death: 

Unless stated otherwise, we have utilized 20mM glucose (HG) exposure for 24 h as our 

model for glucotoxicity, and compared the effects to 2.5mM (LG) basal glucose concentration. 

INS-1 832/13 cells, when exposed to HG for 24 h, showed increase cell death as indicated by 

increased Annexin V/Propidium Iodide staining, compared to cells exposed to LG (Figure 3-1; 

Panel A). Similarly, we quantified cell death using Cell Death Detection® kit as per the 

manufacturer’s instructions, and observed a marked increase in cell death signal when cells were 

exposed to HG for 24 h. Data shown in Figure 3-1 (Panel B) is representative of three independent 

studies (* p < 0.05 vs 2.5mM glucose alone). 

Figure 3-1: Exposure of INS-1 832/13 

cells to glucotoxic conditions induces 

cell death: 

Panel A: Following overnight starvation, 

INS-1 832/13 cells were incubated with 

LG and HG for 24 h. Cells were then 

washed and stained with Annexin V/ 

Propidium Iodide for 15 min. Cells were 

then visualized under Olympus IX71 

inverted fluorescence microscope. Panel 

B: Following incubation with LG (2.5mM) 

or HG (20mM) for 24 h, INS-1 832/13 

cells were washed with PBS and 

analyzed using Cell Death Detection 

ELISAPlus kit according to manufacturer’s 

instructions. Absorbance was measured 

at 405nm and expressed as fold change 

over basal LG. Data shown is 

representative of three independent 

studies (* p < 0.05 vs 2.5mM glucose 

alone). 
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gp91-ds-tat, an inhibitor of Nox2, markedly prevents Nox2 activation, ROS generation and 
p38MAPK phosphorylation under glucotoxic conditions: 

Previous studies by Rey et al. have utilized gp91-ds-tat, a novel peptide inhibitor of 

NADPH oxidase assembly, to prevent vascular superoxide generation in mice (122). This 

chimeric peptide interferes with the interaction of cytosolic p47phox and gp91phox in the 

membrane, thereby, disrupting the holoenzyme assembly. Several studies have utilized this 

inhibitor and its inactive analog, to study the role of Nox2 in models of various disorders (123-

127). At the outset, we utilized this inhibitor and measured its effects in pancreatic β-cells. We 

incubated INS-1 832/13 cells with LG (2.5mM) and HG (20mM) for 24 hours and quantified Nox2 

activation.  Data in Figure 3-2 (Panel A) demonstrate a significant increase in Nox2 activation 

under HG conditions. In addition, gp91-ds-tat, but not its inactive analog, significantly attenuated 

HG-induced Nox2 activation. Furthermore, we observed a similar increase in ROS generation in 

INS-1 832/13 cells incubated with HG, which was abrogated in the presence of gp91-ds-tat 

(Figure 3-2; Panel B).  

We, therefore, utilized this inhibitor to determine the involvement of Nox2-derived oxidative 

stress in HG-induced p38MAPK phosphorylation. Data in Figure 3-2 (Panel C) indicate a marked 

increase in p38MAPK phosphorylation under HG conditions. However, gp91-ds-tat, but not its 

inactive analog, significantly attenuated HG-induced p38MAPK activation. Pooled data from 

multiple experiments is shown in Panel D. Together, these observations suggest upstream 

regulation by Nox2 activation in HG-induced p38MAPK activation, under glucotoxic conditions. 
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Figure 3-2: gp91-ds-tat peptide a specific inhibitor of Nox2, but not its inactive analog, inhibits HG-

induced Nox2 activation, ROS generation and p38MAPK phosphorylation in INS-1 832/13 cells: 

Following 1 h pre-incubation with scrambled peptide (2.5 µM) or gp91-ds-tat peptide (2.5 µM), INS-1 832/13 

cells were then further treated with glucose (LG and HG) in the presence of scrambled peptide (2.5 µM) or 

gp91-ds-tat peptide (2.5 µM) for 24 h. Panel A: Nox2 activity was quantified as described in Chapter 2: 

Methods, and the activity was expressed as nmoles of NADPH oxidized/min/mg of protein. * P < 0.05 vs. 

low glucose. ** P < 0.05 vs. high glucose alone in presence of inactive peptide (mean ± SEM; n = 6). Panel 

B: After incubation of INS-1 832/13 cells with LG and HG in the absence and presence of scrambled or 

gp91-ds-tat peptide as described above, intracellular levels of ROS were measured using DCF-DA assay 

as described in Chapter 2: Methods. ROS generation was expressed as fold change over 2.5 mM glucose. 

* P < 0.05 vs. low glucose. ** P < 0.05 vs. high glucose alone or in the presence of inactive peptide (mean 

± SEM; n = 6). Panel C: After incubation of INS-1 832/13 cells with LG and HG in the absence and presence 

of scrambled or gp91-ds-tat peptide as described above, cells were lysed and lysate proteins were 

separated by SDS-PAGE. After separation, proteins were transferred onto nitrocellulose membrane and 

blocked for 1 h. The membranes were then probed with antibody raised against phosphorylated p38MAPK 

followed by incubation with rabbit secondary antibody. The immune complexes were then detected using 

ECL detection kit. The same blots were stripped and reprobed for total p38MAPK. Panel D: Band intensities 

were quantified by densitometric analysis. Results are shown as mean ± SEM from three independent 

experiments and expressed as fold change of the ratios between phospho-p38MAPK and total p38MAPK. 

* P < 0.05 vs. low glucose, ** P < 0.05 vs. high glucose alone or in presence of inactive peptide.  
 

C) 

D) 
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Glucotoxic conditions promote phosphorylation of p38MAPK, which is dependent on 
Tiam1- and Vav2-mediated Rac1 activation: 

Recent studies from our laboratory have demonstrated that inhibition of Rac1 blocks Nox2 

activation under glucolipotoxic conditions (23, 48, 50). To determine the involvement of Rac1 

activation in p38MAPK activation, we therefore, employed inhibitors of Rac1 function to examine 

their effects on HG-induced p38MAPK phosphorylation.  It is well established that Rac1 is 

activated by its association with GTP, which is mediated by guanine nucleotide exchange factors 

(GEF). Studies in our laboratory have identified two GEFs, Tiam1 and Vav2, involved in Rac1 

activation in the β-cell (18). We have utilized pharmacological inhibitors of Tiam1-Rac1 

(NSC23766) and Vav2-Rac1 (Ehop-016) signaling axis, to assess the role of Rac1 in β-cell 

dysfunction under diabetic conditions (24, 25).  

Herein, we assessed the roles of GEF-mediated Rac1 activation in HG-induced p38MAPK 

phosphorylation. We incubated INS-1 832/13 cells and normal rodent islets with LG and HG for 

24 hours in the absence and presence of NSC23766 or EHop-016, and quantified p38MAPK 

phosphorylation. Data shown in Figure 3-3 (Panel A) demonstrated marked inhibition in p38MAPK 

phosphorylation in presence of NSC23766 in INS-1 832/13 cells and rat islets. Pooled data from 

multiple studies is provided in Panel B and C. Together, these data suggest the requisite role of 

Tiam1-meidated Rac1 activation in HG-induced p38MAPK phosphorylation. Compatible with 

these findings, we observed significant decrease in HG-induced p38MAPK phosphorylation in the 

presence of Ehop-016 in INS-1 832/13 cells and rat islets (Figure 3-3; Panel D). Pooled data from 

multiple studies is provided in Panel E and F. It is interesting, however, that the presence of Ehop-

016 significantly increased p38MAPK phosphorylation under basal glucose concentrations in INS-

1 832/13 cells and rat islets, suggesting that it might be regulating other signaling pathways.  

Together, these data suggest that inhibition of Tiam1-Rac1 and Vav2-Rac1 signaling axes 

prevents HG-induced p38MAPK phosphorylation, demonstrating the involvement of GEF-

mediated Rac1 activation in this signaling axis. 
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Figure 3-3: NSC23766 and Ehop-016, which selectively block Tiam1- and Vav2-mediated Rac1 

activation, prevent HG-induced p38MAPK phosphorylation in INS-1 832/13 cells and rat pancreatic 

islets: 

Panel A: Rat pancreatic islets and INS-1 832/13 cells, pre-incubated overnight with NSC23766 (20 µM), 

were further treated with glucose (LG and HG) in the absence or presence of NSC23766 (20 µM) for 24 h. 

Cells were then lysed and proteins were resolved by SDS-PAGE. Separated proteins were transferred onto 

nitrocellulose membranes. After blocking for 1 h, the membranes were then probed with phosphorylated 

p38MAPK antibody followed by incubation with rabbit secondary antibody. The antibody complexes were 

then detected by ECL detection method. The same blots were stripped and reprobed with antibody against 

total p38MAPK. Panel B: Band intensities of phospho-p38MAPK and total-p38MAPK in INS-1 832/13 cells 

were quantified by densitometric analysis. Results are shown as mean ± SEM from three independent 

experiments and expressed as fold change of the ratios between phospho-p38MAPK and total-p38MAPK. 

* P < 0.05 vs. low glucose, # P < 0.05 vs. high glucose. Panel C: Band intensities of phospho-p38MAPK 

and total-p38MAPK in rat pancreatic islets were quantified by densitometric analysis. Results are shown as 

mean ± SEM from three independent experiments and expressed as fold change of the ratios between 

phospho-p38MAPK and total-p38MAPK. * P < 0.05 vs. low glucose, # P < 0.05 vs. high glucose. Panel D: 

Rat pancreatic islets and INS-1 832/13 cells, pre-incubated overnight with Ehop-016 (5 µM), were further 

treated with glucose (LG and HG) in the absence or presence of Ehop-016 (5 µM) for 24 h. Lysate proteins 

were then resolved by SDS-PAGE, and analyzed by Western Blotting, as described above, for detecting 

phosphorylated and total p38MAPK. Panel E: Band intensities of phospho-p38MAPK and total-p38MAPK 

in INS-1 832/13 cells were quantified by densitometric analysis. Results are shown as mean ± SEM from 

three independent experiments and expressed as fold change of the ratios between phospho-p38MAPK 

and total p38MAPK. * P < 0.05 vs. low glucose, # P < 0.05 vs. high glucose. Panel F: Band intensities of 

phosphor-p38MAPK and total-p38MAPK in rat pancreatic islets were quantified by densitometric analysis. 

Results are shown as mean ± SEM from three independent experiments and expressed as fold change of 

the ratios between phospho-p38MAPK and total p38MAPK. * P < 0.05 vs. low glucose, # P < 0.05 vs. high 

glucose. 

 

EHT1864, a novel inhibitor of Rac1, blocks activation and membrane association of Rac1 
activation and insulin secretion upon physiological glucose stimulation in INS-1 832/13 β-
cells: 

Desire and associates have designed a novel small molecular weight inhibitor EHT1864, 

which blocks Rac1 activation by direct interaction in a GEF-independent manner (28). Studies by 

Shutes et al. have indicated that EHT1864 binds to Rac1 with a higher affinity than guanine 

nucleotides (GDP/GTP) thereby displacing GDP/GTP from the Rac1 binding site, retaining Rac1 

in an inert, inactive state (27, 128). Several studies have utilized this inhibitor to assess the roles 

of Rac1 in cell physiology and disease (129-132). At the outset, we undertook the study to 

examine the effects of EHT1864 on Rac1 function and glucose-stimulated insulin secretion under 

physiological conditions. Following 1 h pre-incubation with EHT1864, we stimulated INS-1 832/13 

cells with LG (2.5mM) and HG (20mM) for 20 min in the continuous absence or presence of 



www.manaraa.com

42 
 

 
   

EHT1864 and quantified Rac1 activation. Data depicted in Figure 3-4 (Panel A) demonstrate a 

marked increase in Rac1-GTP levels under stimulatory glucose concentration, which is 

significantly blocked in the presence of EHT1864. It is noteworthy, however, that EHT1864 

caused an increase in Rac1 activation under basal conditions, although such an increase was not 

statistically significant (Bar1 vs Bar2).  

We, next assessed the effects of Rac1 inhibition with EHT1864, on glucose-stimulated 

insulin secretion. Following pre-incubation with EHT1864 for 1 h as indicated in Figure 3-4 (Panel 

B), INS-1 832/13 cells were incubated with LG and HG for 30 in the continuous absence or 

presence of EHT1864, and quantified GSIS. Data depicted in Figure (Panel B) indicate a marked 

increase in insulin secretory response under stimulatory glucose concentration (20mM). We 

noticed a modest inhibition in GSIS in presence of EHT1864 at 5 µM concentrations. However, 

EHT1864 significantly blocked GSIS at 10uM concentrations. It is noteworthy, however, that 10 

µM EHT1864 augmented insulin secretion under basal glucose concentrations. Similarly, as 

depicted in Figure 3-4 (Panel C), we noticed a significant increase in insulin secretion at 5mM 

glucose concentration in presence of 10 µM EHT1864. Together, these observations demonstrate 

inhibitory effects of EHT1864 on Rac1 activation and GSIS in INS-1 832/13 cells.  

Previous investigations have suggested that membrane targeting of small G-proteins 

(Rac1 and Cdc42) is required for their optimal interaction with effector proteins and physiological 

function. We therefore, examined if glucose-induced membrane association of Rac1 is affected 

in presence of EHT1864. To address this, we first isolated cytosolic and membrane fractions of 

INS-832/13 cells treated with LG and HG with or without EHT1864 for 20 min. The membrane 

fractions were further processed by TritonX partitioning, to isolate hydrophilic and hydrophobic 

compartments. The relative abundance of Rac1 in these fractions was determined by Western 

Blotting and the purity of the fractions was confirmed by probing for their respective marker 

proteins. Data depicted in Figure 3-4 (Panel D) indicate that Rac1 is localized in the cytosolic 

fraction under basal conditions. However, cells treated with 20mM glucose showed marked 
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increase in Rac1 localized in the hydrophilic and hydrophobic fractions of the membrane. 

Furthermore, the presence of EHT1864, prevented Rac1 translocation to the membrane fraction 

induced by 20mM glucose concentration. A representative blot from multiple studies is provided 

in Panel D. Collectively, these data demonstrate that EHT1864 prevents activation and membrane 

targeting of Rac1, thereby inhibiting insulin secretion under stimulatory concentrations of glucose.  
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Figure 3-4: EHT 1864 significantly inhibits glucose-induced Rac1 activation, insulin secretion and 

membrane association of Rac1 in INS-1 832/13 cells:  

Panel A: INS-1 832/13 cells were incubated in RPMI media overnight in the presence of 2.5 mM glucose 

and 2.5 % fetal bovine serum. After pre-incubation with EHT1864 (10 μM) for 1 h, cells were incubated in 

the presence of low (2.5 mM) or high glucose (20 mM) in the continuous absence or presence of EHT 1864 

(10 μM) for 20 min at 37 °C. Rac1 activation was quantified by G-LISA as described in Chapter 2: Methods. 

Data are shown as mean ± SEM from multiple observations and expressed as fold increase over 2.5 mM 

glucose, and. * P < 0.05 vs. 2.5 mM glucose and ** P < 0.05 vs. 20 mM glucose. Panel B: Following 

overnight starvation in RPMI media supplemented with 2.5 mM glucose and 2.5% fetal bovine serum, INS-

1 832/13 cells were preincubated with EHT1864 (0–10 μM) for 1 h and then further stimulated with low (2.5 

mM) or high glucose (20 mM) in the continuous absence or presence of EHT 1864 for 30 min at 37 °C. 

Insulin released into the medium was quantified by ELISA. The data was expressed as ng/ml of insulin 

released ± SEM from multiple experiments. * P < 0.05 vs. 2.5 mM glucose and ** P < 0.05 vs. 20 mM 

glucose alone or in the presence of 5 μM of EHT1864. Panel C: Following overnight starvation in RPMI 

media supplemented with 2.5 mM glucose and 2.5% fetal bovine serum, INS-1 832/13 cells were 

preincubated with EHT1864 (10 μM) for 1 h and further stimulated with different concentrations of glucose 

(0–20 mM) in the continuous absence or presence of EHT1864 (10 μM) for 30 min at 37 °C. The amount 

of insulin released was quantified by ELISA. The data was expressed as ng/ml ± SEM from multiple 

observation. * P < 0.05 vs. 10 mM or 20 mM glucose and ** P < 0.05 vs. 5 mM glucose. Panel D: After 

overnight starvation in RPMI media supplemented with 2.5 mM glucose and 2.5% fetal bovine serum and 

1 h pre-incubation with EHT1864 (10 μM), cells were stimulated with low (2.5mM) or high glucose (20mM) 

in the continuous absence or presence of EHT1864 for 20 min at 37 °C. Cells were then lysed and 

processed by phase partitioning with Triton X-114, to obtain cytosolic and hydrophilic/hydrophobic fractions 

of the membrane. The fractions were then analyzed to determine Rac1 localization by Western blotting, 

and a representative blot from three independent experiments is provided. The purity of the cytosolic and 

hydrophilic/hydrophobic membrane fractions was verified by probing for GAPDH (cytosol) and E-Cadherin 

(Membrane). 

 

Glucotoxicity-induced p38MAPK activation is significantly blocked by EHT1864: 

Our observations in Figure 3-4 demonstrate that EHT1864 blocks membrane targeting 

and activation of Rac1 and insulin secretion in the β-cell under physiological stimulatory 

conditions. We therefore, employed EHT1864 to observe the effects of Rac1 inhibition on 

p38MAPK activation under glucotoxic conditions. INS-1 832/13 cells were incubated with LG 

(2.5mM) and HG (20mM) for 24 h in the continuous absence and presence of EHT1864. As 

depicted in Figure 3-5 (Panel A), we noticed that inhibition of Rac1 guanine nucleotide association 

with EHT1864, significantly attenuated HG-induced p38MAPK phosphorylation. Pooled data from 

multiple experiments is provided in Panel B. Together, these data suggest that Rac1 plays an 

upstream regulatory role in the cascade of events resulting in p38MAPK phosphorylation under 

glucotoxic conditions.  
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Figure 3-5: EHT1864 attenuates HG-induced p38MAPK phosphorylation in INS-1 832/13 cells: 

Panel A: INS-1 832/13 cells were incubated with glucose (2.5 mM and 20 mM) for 24 h in the continuous 

absence or presence of EHT1864 (10 µM). Cells were then lysed and lysate proteins were then separated 

by SDS-PAGE, and transferred onto nitrocellulose membranes. The membranes were then blocked and 

probed with antibody raised against phosphorylated p38MAPK, followed by incubation with rabbit 

secondary antibody. The immune complexes were detected by ECL detection method. The saem blots 

were then stripped and reprobed for total p38MAPK. Panel B: Band intensities were then quantified by 

densitometric analysis. Results are shown as mean ± SEM from three independent experiments and 

expressed as fold change of the ratios between phosphor-p38MAPK and total-p38MAPK. * P < 0.05 vs. 

low glucose, # P < 0.05 vs. high glucose. 
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2-bromopalmitate, an inhibitor of protein palmitoylation, markedly attenuates p38MAPK 
phosphorylation: 

It is well established that small G-proteins undergo a series of post-translational 

modifications including prenylation, carboxymethylation and palmitoylation. Studies by Navarro-

Lerida et al. have demonstrated that Rac1 palmitoylation at cysteine 178, is required for its 

membrane association and optimal function (133). We therefore, asked if Rac1 palmitoylation is 

requisite for HG-induced p38MAPK phosphorylation. To address this, we employed 2-

bromopalmitate (2-BP), a known inhibitor of protein palmitoylation, to assess the effects on 

p38MAPK activation. As depicted in Figure 3-6 (Panel A), we noticed a marked inhibition in HG-

induced p38MAPK activation in the presence of 2-BP. Pooled data from multiple experiments is 

provided in Panel B.  

Figure 3-6: 2-bromopalmitate, an 

inhibitor of protein palmitoylation, 

prevents HG-induced p38MAPK 

phosphorylation:  

Panel A: INS-1 832/13 cells were 

incubated with glucose (LG and HG) for 

24 h in the continuous presence of 2-BP 

(100 µM). Cells were then lysed and 

lysate proteins were analyzed by western 

blotting. The nitrocellulose membranes 

were probed with antibody against 

phospho-p38MAPK followed by 

incubation with rabbit secondary 

antibody. The same blots were stripped 

and analyzed for total p38MAPK. Panel 

B: Band intensities were then quantified 

by densitometric analysis. Results are 

shown as mean ± SEM and expressed as 

fold change of the ratios of phospho- and 

total p38MAPK. * P < 0.05 vs. low 

glucose, # P < 0.05 vs. high glucose. 
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GGTI-2147, an inhibitor of protein geranylgeranylation, had no effect on p38MAPK 
phosphorylation: 

Previous experiments in our laboratory have utilized pharmacological inhibitors, dominant 

negative mutants and siRNA approaches to demonstrate the role of post-translational 

modifications of small G-proteins (e.g. Rac1) in their activity (34). Therefore, in the next set of 

experiments, we determined if Rac1 geranylgeranylation is requisite for HG-induced p38MAPK 

phosphorylation. We quantified p38MAPK phosphorylation following incubation of INS-1 832/13 

cells with LG (2.5mM) and HG (20mM) for 24 h in the continuous presence or absence of GGTI-

2147, a known inhibitor of protein geranylgeranylation. As shown in Figure 3-7 (Panel A), we did 

not notice any significant effects of GGTI-2147 on HG-induced p38MAPK activation. Pooled data 

from multiple studies is provided in Panel B. These data together suggest that Rac1 

geranylgeranylation of Rac1 may not be required for p38MAPK activation under glucotoxic 

conditions. 

Figure 3-7: GGTI-2147, an inhibitor of 

protein geranylgeranylation, exhibits 

no effect on HG-induced p38MAPK 

phosphorylation:  

Panel A: INS-1 832/13 cells were 

incubated with glucose (LG and HG) for 

24 h in the continuous presence of 

GGTI-2147 (10 µM). Cells were then 

lysed and lysate proteins were analyzed 

by western blotting. The nitrocellulose 

membranes were probed with antibody 

against phospho-p38MAPK followed by 

incubation with rabbit secondary 

antibody. The same blots were stripped 

and analyzed for total p38MAPK. Panel 

B: Band intensities were then quantified 

by densitometric analysis. Results are 

shown as mean ± SEM and expressed 

as fold change of the ratios of phospho- 

and total p38MAPK. * P < 0.05 vs. low 

glucose. 
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Collectively, evidence shown in figure 3-8 demonstrate that exposure of pancreatic β-cells 

to glucotoxic conditions lead to activation of p38MAPK activation. Using pharmacological 

inhibitors targeting Nox2 enzyme activity and Rac1 activation, we provide the first evidence 

suggesting the involvement of Rac1-Nox2-derived oxidative stress in the signaling events leading 

to p38MAPK activation.  

Figure 3-8: Proposed model for Rac1-Nox2-mediated ROS generation and p38MAPK activation 
under glucotoxic conditions: 
Using pharmacological inhibitors of Rac1 (NSC23766, Ehop-016 and EHT1864), we have demonstrated 
that Rac1 activation is involved in HG-induced p38MAPK phosphorylation. Furthermore, gp91-ds-tat, but 
not is inactive analog, significantly attenuated HG-induced Nox2 activity, ROS generation and p38MAPK 
phosphorylation.  
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CHAPTER 4: GLUCOTOXIC CONDITIONS PROMOTE RAC1-p38MAPK-
DEPENDENT ACTIVATION OF p53 TUMOR SUPPRESSOR 

p53 tumor suppressor is a transcription factor and consists of several structural and 

functional domains which regulate its function and stability. Evidence from multiple cell types have 

implicated activation of the p53 pathway under the duress of oxidative stress and DNA damage, 

thereby mediating cellular responses to the stress stimuli including cell cycle arrest, DNA repair 

and apoptosis (83). Studies in multiple cell types have suggested activation of apoptotic genes 

including Bax, Apaf1, PUMA, Noxa, by p53-mediated mechanisms (108). However, the 

contributory role of p53 in pancreatic β-cell dysfunction under glucotoxic conditions remains poorly 

understood. To address this, we herein examined the involvement of p53 in the Rac1-Nox2-

p38MAPK signaling cascade in β-cells exposed to glucotoxic conditions. 

Several post-translational modification (e.g., Phosphorylation, Acetylation, Ubiquitination) 

have been shown to regulate p53 functionality and protein levels in the cell (88). It has been 

suggested that phosphorylation of p53 at serine-15 residue in the N-terminal transactivation 

domain is critical for its stabilization and transcriptional activation (106).  Studies have also 

implicated that serine-15 phosphorylation regulates p53 interaction with MDM2 and CBP/p300 

that modulate its stability and DNA binding affinity (90, 134). p38MAPK activation has been 

suggested to result in phosphorylation and stabilization of p53 under specific stress stimuli in 

multiple cell types (79, 135). Additionally, studies by Yoshida and associates have also indicated 

the involvement of ATM kinase in p53 activation in Doxorubicin-induced cardiotoxicity. Using 

pharmacological approaches, they have demonstrated the role of Rac1-mediated oxidative stress 

in ATM kinase and p53 activation resulting in Doxorubicin-induced cardiomyopathy (136). 

Furthermore, studies by Oleson et al. have also shown that ATM kinase mediates DNA repair in 

pancreatic β-cells exposed to inflammatory cytokines, but upon extensive dsDNA breaks may be 

responsible for activating apoptotic pathways primarily through p53-dependent mechanisms 

(137). Using specific pharmacological inhibitors, we explored the regulatory roles of Rac1-Nox2 
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enzyme complex and upstream kinases including ATM kinase and p38MAPK in the p53 activation 

pathway, ultimately resulting in β-cell death.  

p53 tumor suppressor is activated by serine-15 phosphorylation in INS-1 832/13 cells and 
rat islets exposed to glucotoxic conditions: 

Phosphorylation of p53 at serine-15 in N-terminus transactivation domain residue has 

been associated with decreased binding to MDM2 (negative modulator) and increased interaction 

with p300 (positive modulator), thereby increasing functional activation and stabilization of p53 

(90, 134). Therefore, we first determined if exposure to glucotoxic conditions induced p53 

activation by serine-15 phosphorylation. We incubated INS-1 832/13 cells and rat islets with LG 

(2.5 mM) and HG (20 mM) for 24 hours and quantified p53 phosphorylation in these samples. As 

shown in Figure 4-1, exposure to HG concentrations induced significant increase in p53 

phosphorylation at serine-15 in INS-1 832/13 cells (Panel A) and rat islets (Panel C). Data from 

multiple experiments is shown in Panel B and D. 
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Figure 4-1: Exposure of INS-1 832/13 cells and rodent pancreatic islets to glucotoxic conditions 

results in p53 phosphorylation: 

Panel A: Following overnight starvation in RPMI supplemented with 2.5 mM glucose and 2.5% FBS (LG-

LS), INS-1 832/13 cells were incubated with glucose (LG and HG) as indicated for 24 hours. Cell were then 

harvested and lysates proteins were separated by SDS-PAGE. After transferring onto nitrocellulose 

membranes, the membranes were then blocked and probed with antibody raised against phosphorylated 

p53, followed by incubation with rabbit secondary antibody. The immune complexes were detected using 

ECL detection method. The same blots were stripped and probed for total p53. Panel B: Band intensities 

were analyzed by densitometry. Data from multiple experiments is represented as mean ± SEM and 

expressed as fold change in ratios between phospho-p53 and total p53. * P < 0.05 vs. 2.5mM glucose (LG). 

Panel C: Pancreatic islets isolated from normal Sprague Dawley rats were incubated with glucose (LG and 

HG) as indicated for 24 hours. Cell were then harvested and lysates proteins were analyzed by Western 

Blotting for phosphorylated and total p53. Panel D: Band intensities were analyzed by densitometry. Data 

from multiple experiments is represented as mean ± SEM and expressed as fold change in ratios between 

phospho-p53 and total p53. * P < 0.05 vs. 2.5mM glucose (LG). 

 

HG-induced p53 activation is significantly blocked in the presence of EHT1864, 
Simvastatin and GGTI2147: 

Previous experiments in our laboratory have demonstrated the role of Rac1-Nox2 

activation and ROS generation in causing β-cell dysfunction in models of diabetes (49, 50, 52, 

120). We therefore, examined the involvement of Rac1-Nox2 signaling cascade in the activation 

of p53 pathway, under glucotoxic stress. We incubated INS-1 832/13 cells with LG and HG for 24 

h in the absence and presence of EHT1864, which blocks Rac1 activation by blocking its 

interaction with GDP/GTP (128). Phosphorylation of p53 under these conditions was then 

examined by Western Blotting. As represented in Figure 4-2 (Panel A), the presence of EHT1864 

significantly suppressed HG-induced p53 phosphorylation, suggesting the involvement of Rac1 

in activating p53.  

Furthermore, several studies have demonstrated the requisite role of geranylgeranylation 

in membrane targeting of Rac1, which mediates its optimal interaction with its substrate proteins 

(34, 138). To examine if Rac1 geranylgeranylation is required for p53 activation, we employed 

Simvastatin, a global inhibitor of protein prenylation and GGTI-2147, which inhibits protein 

geranylgeranylation. We incubated INS-1 832/13 cells with LG and HG for 24 h in the absence 

and presence of Simvastatin and GGTI2147. Data shown in Figure 4-2 (Panel C) demonstrate a 

marked inhibitory effect of Simvastatin on HG-induced p53 phosphoryaltion. Compatible with 
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these findings, data shown in Figure 4-2 (Panel E) also demonstrate that GGT-2147 prevents p53 

phosphorylation under HG conditions. Data pooled from multiple experiments is provided in Panel 

D and F. Together, these findings implicate that Rac1 activation and prenylation are necessary 

for HG-induced activation of the p53 pathway. 
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Figure 4-2: Glucotoxicity-induced p53 phosphorylation is attenuated in presence of EHT1864, 

Simvastatin and GGTI2147: 

Panel A: Following overnight starvation in LG-LS, INS-1 832/13 cells were further incubated with LG and 

HG for 24 hours in the absence and presence of EHT1864. Lysates were then collected, separated by 

SDS-PAGE and transferred onto nitrocellulose membranes. The membranes were then blocked and 

probed with antibody raised against phospho-p53, followed by incubation with rabbit secondary antibody. 

The immune complexes were detected using ECL detection method. The same blots were stripped and 

probed for total p53. Panel B: Band intensities were analyzed by densitometry. Data from multiple 

experiments is represented as mean ± SEM and expressed as fold change in ratios between phospho-p53 

and total p53. * P < 0.05 vs. LG alone, ** P < 0.05 vs. HG alone. Panel C: After overnight starvation, INS-

1 832/13 cells were incubated with LG and HG for 24 hours in the absence and presence of Simvastatin. 

Lysates were then collected and analyzed by Western Blotting as described above. The membranes were 

probed for phospho-p53 and incubated with rabbit secondary antibody. The same blots were stripped and 

probed for total p53. Panel D: Band intensities were analyzed by densitometry. Data from multiple 

experiments is represented as mean ± SEM and expressed as fold change in ratios between phospho-p53 

and total p53. * P < 0.05 vs. LG alone, ** P < 0.05 vs. HG alone. Panel E: After overnight starvation in LG-

LS in the absence and presence of GGTI-2147, INS-1 832/13 cells were incubated with LG and HG for 24 

hours in the continuous absence and presence of GGTI-2147. Cell lysates were then collected and 

analyzed by Western Blotting as described above. The membranes were probed for phospho-p53 and 

incubated with rabbit secondary antibody. The same blots were stripped and probed for total p53. Panel F: 

Band intensities were analyzed by densitometry. Data from multiple experiments is represented as mean ± 

SEM and expressed as fold change in ratios between phospho-p53 and total p53. * P < 0.05 vs. LG alone, 

** P < 0.05 vs. HG alone. 

 

EHT1864 had no effect on HG-induced nuclear translocation of p53: 

Translocation of p53 to the nucleus has been demonstrated to be critical for its interaction 

with the DNA, for the transcriptional activation of apoptotic genes (98, 139). To examine if HG 

conditions promote nuclear localization of p53, we incubated INS-1 832/13 cells with LG and HG 

in the absence and presence of EHT1864 for 24 hours and isolated the nuclear and non-nuclear 

fractions using NER-PER® kit. p53 localization was then examined by probing for phosphorylated 

and total p53 in these fractions. As depicted in Figure 4-3 (Panel A), we observed accumulation 

of both phosphorylated and total p53 in the nuclear fraction under HG treatment conditions. 

Furthermore, compatible with our findings in Figure 4-1, the presence of EHT1864 significantly 

attenuated HG-induced p53 phosphorylation, as demonstrated by the decreased phospho-p53 

band intensity in the nuclear fraction. However, the presence of EHT1864 did not seem to affect 

total p53 localization in the nuclear fraction under HG conditions. These observations suggest 
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that HG exposure induces p53 translocation to the nucleus, independent of phosphorylation at 

serine-15 residue. 

 

Figure 4-3: Exposure to HG conditions induced nuclear translocation of p53, which is not inhibited 

by EHT1864:  

Panel A: Following overnight incubation in LG-LS media, INS-1 832/13 cells were further incubated with 

LG and HG for 24 h in the absence and presence of EHT1864. Cells were then rinsed with PBS and nuclear 

and non-nuclear fractions were isolated using NE-PER® kit according to the manufacturer’s instructions. 

The isolated fractions were then analyzed by Western Blotting for phosphorylated and total p53. The purity 

of the fractions was analyzed by probing for nuclear Lamin B. Panel B: Band intensities for phospho-p53 

and Lamin B were determined by densitometric analysis. Data from multiple studies is shown as mean ± 

SEM and expressed as fold change in the ratios between phospho-p53 and Lamin B. * P < 0.05 vs. LG 

alone or in the presence of EHT1864, ** P < 0.05 vs. HG alone. Panel C: Band intensities for total-p53 and 

Lamin B were determined by densitometric analysis. Data from multiple studies is shown as mean ± SEM 

and expressed as fold change in the ratios between total-p53 and Lamin B. * P < 0.05 vs. LG alone. NS: 

not significant 
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p53 activation under HG conditions is markedly blocked in the presence of SB203580, a 
selective inhibitor of p38MAPK: 

We next determined the involvement of Rac-Nox2-p38MAPK signaling cascade in the 

activation of p53 under the duress of glucotoxic conditions. Several lines of evidence have 

implicated the role of p38MAPK in the activation of p53 in the presence of stress stimuli (79, 135, 

140, 141). Therefore, in the next set of experiments, we utilized SB203580, a selective inhibitor 

of p38MAPK activity, and observed its effects on HG-induced p53 phosphorylation. As depicted 

in Figure 4-4 (Panel A), the presence of SB203580 blocked p53 phosphorylation in INS-1 832/13 

cells incubated with HG. Data from multiple experiments is provided in Panel B. These data 

collectively demonstrate that Rac-Nox2-p38MAPK module is involved in the activation of p53 

under glucotoxic stress. 

 

Figure 4-4: SB203580, a selective 

inhibitor of p38MAPK, attenuates HG-

induced p53 phosphorylation:  

Panel A: Following overnight starvation in 

LG-LS, INS-1 832/13 cells were further 

incubated with LG and HG for 24 hours in 

the absence and presence of SB203580. 

Lysates were then collected and analyzed 

by Western Blotting. The membranes 

were probed with antibody raised against 

phospho-p53, followed by incubation with 

rabbit secondary antibody. The same 

blots were stripped and probed for total 

p53. Panel B: Band intensities were 

analyzed by densitometry. Data from 

multiple experiments is represented as 

mean ± SEM and expressed as fold 

change in ratios between phospho-p53 

and total p53. * P < 0.05 vs. LG alone, ** 

P < 0.05 vs. HG alone. 
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ATM kinase, a known activator of p53, is also activated under HG conditions in a Rac1-
dependent manner: 

Previous studies in multiple cell types have implicated the involvement of ATM kinase in 

the activation of p53, induced by Rac1-derived oxidative stress and extensive DNA damage (136, 

137, 142, 143). ATM kinase, a cell cycle regulator, is known to be activated by auto-

phosphorylation in the presence of double stranded DNA breaks (144). We therefore undertook 

the study to determine if glucotoxic conditions promote activation of ATM kinase in INS-1 832/13 

cells. Data depicted in Figure 4-5 (Panel A) demonstrate a marked increase in ATM kinase 

phophorylation under HG conditions. Furthermore, the presence of EHT1864, significantly 

blocked HG-induced ATM kinase activation. Pooled data from multiple experiments is provided in 

Panel B. These data suggest that HG exposure promotes Rac1-dependent ATM kinase 

activation. 

 

Figure 4-5: Exposure to HG conditions 

induces ATM kinase phosphorylation, 

which is inhibited by EHT1864: 

Panel A: Following overnight starvation in LG-

LS, INS-1 832/13 cells were further incubated 

with LG and HG for 24 hours in the absence 

and presence of EHT1864. Lysates were then 

collected and analyzed by Western Blotting. 

The membranes were then blocked and 

probed with antibody raised against phospho-

ATM kinase, followed by incubation with rabbit 

secondary antibody. The same blots were 

stripped and probed for total ATM kinase. 

Panel B: Band intensities were analyzed by 

densitometry. Data from multiple experiments 

is represented as mean ± SEM and expressed 

as fold change in ratios between phospho- and 

total ATM kinase. * P < 0.05 vs. LG alone, ** P 

< 0.05 vs. HG alone. 
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KU-55933, a selective inhibitor of ATM kinase, blocks HG-induced ATM kinase activation 
but has no effect on p53 activation: 

Pharmacological inhibition of ATM kinase has been shown to prevent p53 phosphorylation 

in cells exposed to various stress stimuli (145). In the next set of experiments, we employed this 

inhibitor to examine its effects on HG-induced ATM kinase and p53 phosphorylation. Our findings 

demonstrated a marked decrease in HG-induced ATM kinase phosphorylation in presence of 

KU55933 in INS-1 832/13 cells, as depicted in Figure 4-6 (Panel A). However, we observed no 

significant effects of KU55933 in HG-induced p53 phosphorylation.  Taken together, these data 

implicate that ATM kinase does not regulate p53 under glucotoxic stress, and that p53 and ATM 

kinase, although regulated by Rac1-Nox2 signaling, might be involved in independent 

downstream pathways. 
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Figure 4-6: KU55933, a selective inhibitor of ATM kinase, prevents HG-induced ATM kinase 

phosphorylation but has no effect on p53 phosphorylation: 

Panel A: Following overnight starvation, INS-1 832/13 cells were incubated with LG or HG in the absence 

or presence of KU-55933 for 24 h. Cell lysate proteins were separated and analyzed by Western Blotting 

for phosphorylated ATM kinase and p53. Blots were then stripped and re-probed for total ATM kinase and 

p53. Panel B: Phospho-ATM kinase band intensities were quantified by densitometry and ratios were 

calculated over total-ATM kinase. Data from multiple studies is shown as mean ± SEM and expressed as 

fold change in ratios between phosphorylated and total ATM kinase. * P < 0.05 vs LG alone, ** P< 0.05 vs 

HG alone. Panel C: Phospho-p53 band intensities were quantified by densitometry and ratios were 

calculated over total-p53. Data from multiple studies is shown as mean ± SEM and expressed as fold 

change in ratios between phosphorylated and total p53. * P < 0.05 vs LG alone. 

 

EHT1864, markedly blocks HG-induced β-cell death: 

Our findings have demonstrated that Rac1 activation leads to activation of p38MAPK and 

p53 signaling pathway, resulting in β-cell death under glucotoxic stress. Therefore, in the last set 

of experiments, we utilized EHT1864 to determine if pharmacological inhibition of Rac1 prevents 

HG-induced β-cell death. We incubated INS-1 832/13 cells with LG and HG for 24 h in the 

continuous absence and presence of EHT1864 and analyzed cell death using Cell Death 

Detection® kit as per the manufacturer’s instructions. Our findings indicated a significant increase 

in cell death signal under HG conditions as shown in Figure 4-7. We also observed a marked 

decrease in HG-induced β-cell death in presence of EHT1864, demonstrating protective effects 

of Rac1 inhibition under glucotoxic stress conditions. 
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Figure 4-7: EHT1864 prevents HG-induced cell death in INS-1 832/13 cells: 

After overnight incubation in LG-LS media, INS-1 832/13 cells were incubated with LG and HG for 24 h in 

the absence and presence of EHT1864. Cells were then washed with PBS and analyzed using Cell Death 

Detection ELISAPlus kit according to the manufacturer’s instructions. Absorbance was measured at 405nm 

and expressed as fold change over basal LG. Data from multiple studies is shown as mean ± SEM and 

expressed as fold change over basal LG. * p < 0.05 vs LG alone, ** p < 0.05 vs HG alone, NS: Not 

significant. 

 

In conclusion, our findings in chapter 3 and 4 together demonstrate that exposure of 

pancreatic betake cells to glucotoxic conditions results in increased Rac1-Nox2-derived oxidative 

stress, leading to activation of p38MAPK-p53 signaling axis that culminates in the induction of 

apoptotic pathways. Our findings have also indicated activation of ATM kinase under glucotoxic 

conditions, which might be involved in other signaling pathways. 



www.manaraa.com

61 
 

 
   

 

 

Figure 4-8: Proposed model for Rac1-Nox2-induced oxidative stress and activation of p38MAPK-

p53 signaling axis leading to β-cell apoptosis: 

Our findings have implicated Rac1-Nox2 activation in p38MAPK activation under glucotoxic stress. 

Furthermore, using pharmacological inhibitor of Rac1 (EHT1864) and p38MAPK (SB203580) we have 

demonstrated that activation of Rac1-p38MAPK signaling module is involved in HG-induced p53 

phosphorylation.   
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CHAPTER 5: RAC1-p38MAPK-p53 SIGNALING AXIS IN PANCREATIC ISLETS 
FROM THE ZDF RAT MODEL AND HUMAN ISLETS  

Phagocyte-like NADPH oxidase (Nox2) is composed of several membrane and cytosolic 

components including the small G-protein, Rac1. Rac1 activation has been demonstrated to play 

a critical role in the functional assembly and activation of Nox2 holoenzyme complex (41, 50, 52). 

Although there is ample evidence suggesting the positive regulatory role of Rac1-Nox2 signaling 

in physiological ROS generation and glucose-stimulated insulin secretion, Nox2 has been shown 

to play key contributory roles in the pathophysiology of beta-cell dysfunction leading to onset of 

diabetes. Previous observations in our laboratory have demonstrated that increased Rac1-Nox2-

derived ROS generation results in metabolic dysfunction of β-cells when exposed to palmitate 

(50). Studies have also implicated the involvement of Nox2-induced oxidative stress in models of 

cytokine-induced beta-cell dysfunction (52, 120). Furthermore, exposure to glucotoxic conditions 

resulted in increased Nox2 activation in INS-1 832/13 cells (146). The central objective of this 

dissertation project is to demonstrate that exposure of pancreatic β-cells to glucotoxic conditions 

leads to sustained activation of Rac1-Nox2 enzyme complex and the resulting oxidative stress 

activates p38MAPK-p53 signaling cascade, ultimately causing β-cell death. As discussed in 

chapters 3 and 4, our in vitro studies in INS-1 832/13 cells and rat islets exposed to glucotoxic 

conditions demonstrates increased activation of p38MAPK and p53. To examine this pathway in 

an in vivo model, we utilized the Zucker diabetic fatty (ZDF) rat, which has been extensively used 

as a model for obesity, insulin resistance and pancreatic β-cell dysfunction (147). 

ZDF rats possess a spontaneous mutation of the leptin receptor gene and initially develop 

obesity. Consequently, these animals spontaneously develop diabetes induced by elevated 

glucose and free fatty acid levels. Animals which possess a heterozygous leptin receptor mutation 

(Zucker lean control; ZLC), however, do not exhibit signs of diabetes (148). Previous studies from 

our laboratory have utilized this model to demonstrate the involvement of increased Rac1-Nox2 

activity and ROS generation in mediating β-cell dysfunction. Additionally, exposure of human 
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pancreatic islets to glucotoxic conditions also resulted in increased Rac1 activation and ROS 

generation. The downstream signaling pathways in these models, however, remain to be fully 

understood.  Herein, we examined the p38MAPK-p53 signaling axis in pancreatic islets isolated 

from ZDF rats and in human islets exposed to glucotoxic concentrations. 

p38MAPK and p53 are activated in islets isolated from ZDF rats: 

We first examined p38MAPK phosphorylation in pancreatic islets isolated from male ZDF 

rats and compared them to their age-matched ZLC rats. As evidenced in Figure 5-1 (Panel A), 

the ZDF rats that developed overt diabetes and exhibited elevated blood glucose levels, also 

showed increased phosphorylation of p38MAPK. Data pooled from four ZDF rats is shown in 

Panel B. Furthermore, in a separate set of studies, we examined levels of phosphorylated p53 in 

two ZDF rats. We noticed a marked increase in p53 phosphorylation in islets isolated from ZDF 

rats compared to their age-matched controls, as depicted in Figure 5-1 (Panel C). Data pooled 

from two ZDF and two ZLC rats is provided in Panel D. 
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Figure 5-1: Pancreatic islets from ZDF rats show elevated levels of phosphorylated p38MAPK and 

p53: 

Panel A: Pancreatic islets were isolated from ZDF rats and their age-matched controls by collagenase 

digestion. After overnight incubation in RPMI media, islets were lysed and lysate proteins were separated 

by SDS-PAGE. Proteins were then transferred onto nitrocellulose membranes and blocked for 1 h. The 

membranes were then probed for phosphorylated p38MAPK followed by incubation with IR-Dye conjugated 

rabbit secondary antibody. The immune complexes were detected by Odyssey® Imaging Systems. The 

same blots were stripped and probed for total p38MAPK. Panel B: Band intensities were determined and 

analyzed by densitometric analysis. Data shown as mean ± SEM are from four rats in each group and 

expressed as fold change in the ratios between phospho- and total p38MAPK. * P < 0.05 vs ZLC rat islets. 

Panel C: Pancreatic islets were isolated from ZLC and ZDF rats and analyzed by Western Blotting as 

described above. The membranes were probed with antibody raised against phospho-p53 followed by 

incubation with rabbit IR-Dye conjugated secondary antibody. The same blots were stripped and probed 

for total p53. Panel D: Band intensities were determined and analyzed by densitometric analysis. Data 

shown as mean ± variance from two rats in each group and expressed as fold change in the ratios between 

phospho- and total p38MAPK.  

 

Exposure of normal human islets to glucotoxic conditions activates p38MAPK and p53: 

We next determined if exposure of pancreatic islets from normal human donors to 

glucotoxic conditions promote p38MAPK and p53 phosphorylation. We incubated human islets to 

LG (5.8 mM) and HG (30 mM) for 24 h and quantified p38MAPK and p53 phosphorylation. As 

depicted in Figure 5-2 (Panel A), we noticed a marked increase in p38MAPK phosphorylation in 

HG-treated islets (1.61 fold increase). Furthermore, our findings also indicated a 1.97 fold 

increase in p53 phosphorylation in HG-treated islet samples. These data are compatible to our 

findings in INS-1 832/13 cells, normal rat islets (Chapters 3 and 4) and ZDF rat islets (Figure 5-

1), together demonstrating increased activation of p38MAPK-p53 signaling pathway upon 

exposure of β-cells to glucotoxic conditions. 
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Figure 5-2: p38MAPK and p53 activation in human islets exposed to glucotoxic conditions:  

Pancreatic islets from non-diabetic human donors were incubated with LG (5.8 mM) and HG (30 mM) for 

24 h. Islets were then lysed and analyzed by Western Blotting for p38MAPK (Panel A) and p53 (Panel B). 

The membranes were probed for phospho-p38MAPK and phospho-p53, followed by incubation with anti-

rabbit secondary antibodies. The immune complexes were then detected by Odyssey® Imaging Systems. 

The same blots were stripped and probed for total p38MAPK and p53. Data shown are expressed as fold 

change in the ratios between phospho- over total p38MAPK and phospho- over total p53. 

Exposure to glucotoxic conditions promote nuclear localization of p53 in human islets: 

As described in Chapter 4, our studies in INS-1 832/13 cells treated with LG and HG for 

24 h indicated accumulation of p53 in the nuclear fractions under HG conditions. We therefore, 

incubated human pancreatic islets with LG (5.8 mM) and HG (30 mM) for 24 h and isolated nuclear 

and non-nuclear fractions using NER-PER® kit. In line with our observations in INS-1 832/13 

cells, we found increased localization of phospho- and total p53 in the nuclear fractions of HG-

treated samples (Figure 5-3).  
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Figure 5-3: Glucotoxic conditions promote nuclear localization of p53 in human islets: 

Pancreatic islets from non-diabetic human donors were incubated with LG and HG for 24 h. Cells were then 

rinsed with PBS and nuclear and non-nuclear fractions were isolated using NE-PER® kit according to the 

manufacturer’s instructions. The isolated fractions were then analyzed by Western Blotting for 

phosphorylated and total p53. The purity of the fractions was analyzed by probing for nuclear Lamin B. 
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CHAPTER 6: DISCUSSION 

Insulin resistance caused by various factors such as obesity, results in decreased glucose 

uptake and utilization in the peripheral tissues. This is initially compensated by the pancreatic β-

cells, which secrete more insulin to normalize the elevated blood glucose levels. However, the 

chronic exposure of β-cells to elevated glucose concentrations or glucotoxicity eventually leads 

to decreased function and ultimately cell demise, culminating in the onset of diabetes. Recently, 

we reported that exposure of INS-1 832/13 cells, rodent and human pancreatic islets to glucotoxic 

conditions results in activation of executioner caspases and degradation of nuclear lamins (119, 

149). In addition, studies have implicated the role of Rac1-Nox2 enzyme complex and associated 

oxidative stress in the pathology of β-cell dysfunction (49, 50, 52). However, the precise signaling 

mechanisms involved in mediating loss in glucose-stimulated insulin secretion (GSIS) and β-cell 

death under glucotoxic conditions, remain to be poorly understood. 

Apart from the negative modulatory roles in the induction of oxidative stress, several lines 

of evidence have demonstrated the requisite role of Rac1 and Nox2 signaling in GSIS (18, 35). 

Glucose enters the β-cell via GLUT-2 transporter, where it is metabolized to generate ATP. The 

resulting increase in ATP/ADP ratio causes closure of ATP-sensitive K+ channels resulting in 

membrane depolarization. This causes the opening of voltage-gated Ca+2 channels and increased 

intracellular Ca+ concentration. In presence of Ca+, insulin-laden secretory granules are then 

mobilized towards the membrane for fusion and release. This process of translocation of insulin 

granules to the plasma membrane is mediated by vesicle-associated and t-SNARE proteins at 

target docking sites, and requires cytoskeletal reorganization (8). Studies by Asahara and 

associates have demonstrated the critical role of Rac1 in F-actin remodeling and GSIS, using a 

beta-cell specific Rac1-/- mice model (22). Furthermore, previous studies from our laboratory 

have also utilized several pharmacological agents to demonstrate that Rac1 activation is required 

for GSIS. Using NSC23766, we demonstrated that inhibition of Tiam1, a GEF mediating Rac1 

activation, results in marked reduction in GSIS in the presence of the inhibitor (24). We also 
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examined the effects of Ehop-016, a specific inhibitor of Vav2- mediated Rac1 activation, in 

pancreatic β-cells (25). We observed alterations in F-actin remodeling and a significant decrease 

in GSIS in the presence of Ehop-016, demonstrating the role of Rac1 in cytoskeletal 

reorganization and insulin secretion.  

Furthermore, several investigations have implicated the involvement of Nox2 and reactive 

oxygen species (ROS) in GSIS (35, 36). Nox2 holoenzyme is composed of several membrane-

bound (gp91phox and p22phox) and cytosolic (p40phox, p47phox, p67phox and Rac1) components. Upon 

stimulation, the cytosolic components translocate towards the membrane thereby mediating the 

holoenzyme assembly. The functionally active Nox2 enzyme complex catalyzes the one electron 

reduction of molecular oxygen to generate superoxide. Emerging evidence implicate that a tonic 

increase in Rac1-Nox2-mediated ROS generation is necessary for nutrient-induced insulin 

secretion (38, 39). Studies by Leloup and associates have demonstrated that co-provision of 

antioxidants suppresses ROS generation induced by glucose, resulting in alterations in calcium 

mobilization and decreased GSIS, in rodent pancreatic islets (38). Moreover, studies by Morgan 

and associates have demonstrated the involvement of Nox2-derived ROS in GSIS in rodent 

pancreatic islets (36).  

As demonstrated by these studies, Rac1-Nox2 activity and associated generation of ROS 

is required for physiological functioning of the β-cell. However, evidence from studies in pancreatic 

β-cells, retinal endothelial cells and cardiomyocytes suggests the involvement of Rac1-Nox2 

signaling axis in causing oxidative stress under diabetic conditions (48, 150, 151). Previous 

studies in our laboratory have demonstrated that sustained activation of Rac1-Nox2 and ROS 

generation in pancreatic β-cells exposed to glucolipotoxic conditions and inflammatory cytokines, 

leads to loss in β-cell function and apoptosis (49, 50, 52). Our observations in the ZDF rat model 

and type2 diabetic islets have also suggested that Rac1-Nox2-ROS signaling plays a key role in 

causing β-cell dysfunction (49). However, the underlying mechanisms mediating the effects of 

Rac1-Nox2-induced oxidative stress remain poorly understood. Using pharmacological 
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approaches to target the Rac1-Nox2 signaling cascade, my doctoral work focusses on identifying 

the effector proteins activated by increased Rac1-Nox2-ROS signaling, that are involved in 

activation of apoptotic factors leading to β-cell death. 

Desire et al. have developed a small molecule inhibitor, EHT1864, which inhibits Rac1 

activation in vivo (28). Further characterization by Shutes et al. demonstrated that the effect of 

EHT1864 is independent of GEFs (Tiam1, Vav2) since they observed inhibition of cellular 

transformation induced by constitutively active mutant of Rac1 (61L) (128). EHT1864 binds 

directly to Rac1 with a greater affinity than guanine nucleotides (GDP/GTP) thereby retaining 

Rac1 in an inert, inactive state by displacing pre-bound GDP/GTP. We first tested this Rac1 

inhibitor to examine the role of Rac1 in physiological GSIS in INS-1 832/13 cells. Our results have 

indicated a marked reduction in glucose-induced activation and membrane targeting of Rac1 in 

the presence of EHT1864. Under these conditions, we also observed a marked reduction in GSIS. 

Several studies in multiple cell types have utilized EHT1864 to understand Rac1 function in health 

and disease (29-32). We have further utilized EHT1864, to deduce roles of Rac1-Nox2-signaling 

axis in activating the downstream apoptotic pathways and β-cell death under glucotoxic 

conditions.  

To identify the downstream signaling proteins mediating the effects of Rac1-Nox2-induced 

oxidative stress, we examined the activation status of stress-activated protein kinases 

(SAPK/MAPK). Several lines of evidence have implicated the role of stress kinases, JNK1/2 and 

p38MAPK in the activation of apoptotic pathways (55). Previous studies in our laboratory in ZDF 

and human pancreatic islets, have coupled increased Rac1 activation and Nox2 subunit 

expression with increased activation of JNK1/2 (49). Studies by Flores-Lopez and associates 

have also suggested that p38MAPK is activated in β-cells exposed to glucotoxic conditions, 

resulting in apoptosis (121). Additionally, studies in mice lacking an isoform of p38MAPK, showed 

improved glucose tolerance as a result of improved insulin secretion from the β-cell (75). Our 

findings have also demonstrated increased activation of p38MAPK in insulin-secreting INS-1 
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832/13 cells, normal rodent and human islets exposed to glucotoxic conditions, and in islets 

isolated from ZDF rats.  

 

 

Figure 6-1: Our working model illustrating the involvement of Rac1-Nox2 signaling axis and 

associated oxidative stress in the activation of p38MAPK and p53, culminating in β-cell 

apoptosis: We demonstrated that exposure of pancreatic β-cells to glucotoxic conditions leads to 

sustained activation of Rac1-Nox2 enzyme complex and excess ROS generation. The resulting 

oxidative stress leads to p38MAPK-mediated activation of p53, which, in turn, activates the transcription 

of apoptotic proteins and causes β-cell death. Our finding also demonstrate the potential cytoprotective 

effects of pharmacological inhibitors of Rac1 (EHT1864, NSC23766, Ehop-016), Nox2 (gp91-ds-tat) 

and p38MAPK (SB203580) in the β-cell, exposed to glucotoxic conditions. 
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Based on this evidence, we examined if Rac1-Nox2 driven oxidative stress causes β-cell 

dysfunction under glucotoxic conditions, mediated by p38 family of stress kinases. Several studies 

including from those from our own laboratory, have utilized diphenyleneiodonium (DPI) and 

Apocynin, which block Nox2 activation and ROS generation in models of cellular dysfunction 

(152). However, it has been suggested that DPI also interacts with other flavin-dependent 

enzymes including nitric oxide synthase and xanthine oxidase (153). In addition, studies have 

also indicated that Apocynin has anti-oxidant properties, independent of its inhibitory effects on 

Nox2 (154). Recently, Rey et al. have identified a Nox2-specifc peptide-based inhibitor, gp91-ds-

tat, which prevents the interaction of the cytosolic p47phox with gp91phox in the membrane (122), 

thereby inhibiting Nox2 assembly and functional activation. Several studies have demonstrated 

the specificity of gp91-ds-tat to Nox2, compared to its inactive scrambled analog (123-127). To 

determine the role of Nox2 in p38MAPK activation under HG conditions in the β-cell, we first 

utilized this peptide inhibitor and quantified HG-induced Nox2 activity and ROS generation. We 

observed significant blockade in HG-induced Nox2 activation and ROS generation in the 

presence of gp91-ds-tat, a specific inhibitor of Nox2, but not its inactive analog. We also 

demonstrated that HG-induced p38MAPK phosphorylation is significantly blocked in the presence 

of gp91-ds-tat, but not its inactive analog. Thus, our studies provide the first evidence linking HG-

induced Nox2 activation and ROS generation to p38MAPK activation. 

Recent in vitro and in vivo studies have demonstrated that NSC23766, an inhibitor of 

Tiam1-mediated Rac1 activation, prevents cellular dysfunction in pancreatic β-cells, retinal 

endothelial cells and cardiomyocytes upon exposure to diabetic conditions (50, 150, 151). Our 

studies with NSC23766 and Ehop-016 have also shown that inhibition of Tiam-Rac1 signaling 

blocks HG-induced p38MAPK activation in INS-1 832/13 cells and rodent islets, indicating that 

regulation of Rac1 function by Tiam1 and Vav2 are requisite for p38MAPK activation under HG 

conditions. These observations are supported by a recent finding by Liu and associates where 

they showed that while Vav2 mediates GTP loading of Rac1, Tiam1 functions as an adapter in a 
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VE-cadherin-p67phox-Par3 polarity complex that mediates localized activation of Rac1. They 

concluded that Tiam1 and Vav2 play a dual regulatory role in inducing localized Rac1 activation 

required for Nox2 activation and ROS generation (155). Moreover, the presence of EHT1864, 

which disrupts Rac1 interaction with GTP/GDP in a GEF-independent manner, also attenuated 

HG-induced p38MAPK phosphorylation. Together, these results demonstrate the involvement of 

Rac1 in p38MAPK activation under HG conditions. It is noteworthy that our studies with Ehop-

016 showed activation of p38MAPK under basal LG conditions. These effects could be as a result 

of activation of other signaling mechanisms in presence of Ehop-016. Studies by Montalvo-Ortiz 

et al. suggest that other Rho-family G –proteins such as RhoA, which has been previously shown 

to activate p38MAPK (156), are activated in presence of Ehop-016. Additional studies are needed 

to understand these observations.  

In the next set of studies, we examined the downstream effects of p38MAPK activation. 

Indeed, studies in multiple cell types have documented the role of p38MAPK in cell cycle arrest 

and apoptosis (53, 65). For example, evidence from multiple cell types have reported that 

p38MAPK activates p53 tumor suppressor in response to stress stimuli to mediate apoptosis 

(121). Previous studies by Karunakaran and associates have analyzed the effects of 1-methyl-4-

phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced ROS generation on the regulation of 

p38MAPK-p53 pathway. They observed that treatment of dopaminergic neurons with MPTP-

activated p38MAPK which in turn activated p53 and p53-dependent transcription of apoptotic Bax 

and PUMA. Moreover, the presence of pharmacological inhibitors of p38MAPK and p53 protected 

primary neurons from MPTP-induced cell death (157). Furthermore, earlier studies by Bulavin et 

al. have also shown that p38MAPK activates p53 tumor suppressor by phosphorylation of serine-

33 and serine-46 residues in cancer cell lines upon UV radiation (79). These phosphorylation sites 

are required for phosphorylation at serine-15, which has been implicated as the critical step in the 

transcriptional activation and stabilization of p53 (88, 106). Loughery and associates have 

suggested that serine-15 phosphorylation of p53 is essential for its interaction with transcriptional 
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proteins and target gene expression (106). They reported that substitution of serine-15 with 

alanine results in decreased p53-dependent transcriptional activity which is rescued by 

substitution with an aspartate that mimics serine residue. This is further supported by evidence 

from multiple studies indicating that phosphorylation at serine-15 also modulated the interaction 

of p53 with its regulators including Mdm2 and p300 (90, 91).  

In the context of pancreatic β-cells, studies by Hoshino et al. have examined the role of 

p53 in β-cell dysfunction in models of Type 1 and Type 2 diabetes (158). They observed that loss 

of p53 function prevented onset of diabetes in streptozotocin-induced type1 and db/db mouse 

model for type 2 diabetes. Additionally, a proteomic study in type2 diabetic human islets indicated 

significant increase in apoptotic signaling pathways including the p53 apoptotic pathway (159). 

Despite these findings, the regulatory factors involved in the activation of p53 in β-cells under 

diabetic conditions, remain to be fully understood. Recently, Flores-Lopez and associates have 

reported that p38MAPK co-localizes with p53 under HG conditions and mediates p53 

phosphorylation, resulting in β-cell apoptosis (121). 

We therefore, tested if p53 is activated by Rac1-Nox2-p38MAPK signaling axis in β-cells 

exposed to HG conditions by quantifying phosphorylation at serine-15 residue. Our observations 

have indicated increased serine-15 phosphorylation of p53 in INS-1 832/13 cells and human islets 

exposed to HG conditions, and in diabetic ZDF rats compared to their age-matched ZLC control 

animals. However, the presence of Rac1 inhibitor (EHT1864) and p38MAPK inhibitor (SB203580) 

markedly attenuated HG-induced p53 phosphorylation in INS-1 832/13 cells, suggesting the 

involvement of Rac1-p38MAPK signaling in p53 activation. Furthermore, we isolated nuclear and 

non-nuclear fractions from INS-1 832/13 cells incubated with LG and HG. We observed increased 

accumulation of p53 in the nucleus under HG conditions, which is requisite for its interaction with 

specific DNA sites to promote the transcription of apoptotic genes (139). However, our results 

show that the presence of EHT1864 had no significant effect on nuclear accumulation of p53, 

indicating that nuclear localization is regulated by other mechanisms but not phosphorylation (98).  
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Previous studies from our own laboratory, have shown that post-translational prenylation 

of Rac1 (geranylgeranylation) is requisite for its localization in the membrane fraction, thereby, 

facilitating its interaction with downstream substrates. Pharmacological and siRNA-mediated 

inhibition of prenylation resulted in decreased GSIS, demonstrating the critical role of these 

modifications in β-cell function (34). The presence of FTI-277 and GGTI-2147, inhibitors of protein 

farnesylation and geranylgeranylation, significantly attenuated Nox2-induced ROS generation 

under stimulatory glucose concentration, suggesting the importance of protein prenylation (Rac1) 

in Nox2-mediated ROS generation (41). Studies from our laboratory have also reported that 

increased Nox2 activation in presence of inflammatory cytokines, is attenuated in the presence 

of 2-bromopalmitate, suggesting that Rac1 palmitoylation is also requisite for Nox2-induced 

oxidative stress (120). Therefore, we next asked the question if post-translational modifications 

of Rac1 are required for p38MAPK and p53 activation. We observed a significant inhibition in 

p38MAPK activation under HG conditions in presence 2-bromopalmitate (2-BP), a specific 

inhibitor of protein palmitoylation (160).  

Additionally, we tested the effects of GGTI-2147, which inhibits geranylgeranylation, on 

HG-induced p38MAPK phosphorylation. We observed no effects of GGTI-2147 on HG-induced 

p38MAPK activation implying that Rac1 geranylgeranylation is not necessary for p38MAPK 

activation. However, our studies with Simvastatin, a global inhibitor of protein prenylation, and 

GGTI2147, suggested a marked decrease in HG-induced p53 phosphorylation. It has been 

suggested that bisphosphonates, which inhibit prenylation by blocking mevalonate pathway, 

activate p38MAPK before eliciting their effects on G-protein prenylation, independent of Rac1 

activation (161). Further studies are required to understand the effects of GGTI-2147 on HG-

induced p38MAPK phosphorylation. 

As a logical extension of these studies, we tested if inhibition of Rac1 with EHT1864 had 

any effect on glucotoxicity-induced β-cell death. Our observations showed a significant decrease 

in cell death in INS-1 832/13 cells exposed to glucotoxic conditions. Together, our observations 
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in INS-1 832/13 cells, rodent and human pancreatic islets have demonstrated that sustained 

activation of Rac1-Nox2 signaling module and associated oxidative stress, results in p38MAPK-

dependent activation of p53, culminating in β-cell death, under glucotoxic conditions. 

We also examined the involvement of ATM kinase, a known regulator of p53, in the Rac1-

p38MAPK-p53 signaling cascade. Evidence from multiple studies have shown that ATM kinase 

is activated upon DNA damage, mainly by auto-phosphorylation (144). Studies by Oleson et al. 

have implicated that ATM kinase is activated in pancreatic β-cells exposed to inflammatory 

cytokines and mediated DNA damage response (DDR). However, upon excessive DNA damage, 

ATM kinase activates cellular apoptotic mechanism mainly by p53-dependent mechanisms (137). 

Furthermore, Yoshida et al. have reported that ATM kinase activates p53 upon DNA damage 

caused by Doxorubicin, which was prevented in presence of inhibitor of protein prenylation 

(pitavastatin) and Rac1 (NSC23766) (136). We therefore, asked if ATM kinase is activated in β-

cells exposed to HG conditions. We observed a marked increase in activation of ATM kinase, 

when INS-1 832/13 cells were exposed to HG conditions, which was significantly blocked upon 

Rac1 inhibition by EHT1864. To determine the role of ATM kinase in the regulation of p53, we 

utilized KU55933, a known inhibitor of ATM kinase activity, to examine the effects on HG-induced 

signaling events. Our observations indicated a marked reduction in ATM kinase activation under 

HG conditions. However, the presence of KU55933 had no significant effect on p53 activation, 

suggesting that ATM kinase, although regulated by Rac1 signaling, might be involved in other 

signaling pathways (83). Since multiple studies, including those in ATM deficient mice, have 

indicated a unique role of ATM kinase in glucose homeostasis, it is possible that it is involved in 

DNA damage response mechanisms activated as a result of Rac1-induced oxidative stress.  

Further studies are required to understand the regulatory role of ATM kinase in β-cells under 

glucotoxic stress.   
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Pharmacological 
agent 

Effect 
p38MAPK 

phosphorylation 
p53 

phosphorylation 

EHT1864 ↓ Rac1 activity Inhibition Inhibition 

gp91-ds-tat ↓ Nox2 activity Inhibition Not determined 

NSC23766 ↓ Rac1 activity Inhibition Not determined 

Ehop-016 ↓ Rac1 activity Inhibition Not determined 

Simvastatin 
↓ Protein 

prenylation 
Not determined Inhibition 

GGTI2147 
↓ Protein 

geranylgeranylation 
No effect Inhibition 

2-bromopalmitate 
↓ Protein 

palmitoylation 
Inhibition Not determined 

SB203580 ↓ p38MAPK activity Not determined Inhibition 

 

Table 6-1: Summary of effects of pharmacological inhibitors on HG-induced p38MAPK and p53 

activation 
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CHAPTER 7: CONCLUSIONS AND FUTURE DIRECTIONS 

The central objective of my Ph.D. dissertation project is to assess the role of sustained 

activation of Rac1 and Nox2 holoenzyme in induction of oxidative stress, resulting in the activation 

of p38MAPK and p53 signaling axis, culminating in pancreatic β-cell dysfunction. Previous 

observations in our laboratory have demonstrated contributory roles of increased Rac1-Nox2 

activity and ROS generation in mediating metabolic dysfunction of the β-cell in models of diabetes 

(49, 50, 52). As a logical extension to these studies, this project focuses on examining the 

downstream apoptotic pathways, activated by Rac1-Nox2-derived oxidative stress. These data 

can be summarized as follows: 

1. Exposure of pancreatic β-cells (INS-1 832/13 cells, rodent and human islets) to glucotoxic 

conditions results in activation of pro-apoptotic p38MAPK and p53 signaling pathway. 

Pancreatic islets isolated from Zucker diabetic fatty (ZDF) rat, a model for type 2 diabetes, 

also exhibit increased activation of p38MAPK and p53. 

2. gp91-ds-tat, but not its inactive analog, attenuated HG-induced p38MAPK 

phosphorylation, suggesting that HG-induced Nox2 activation and ROS generation are 

upstream to p38MAPK activation. 

3. NSC23766 and Ehop-016, which target Tiam1-Rac1 and Vav2-Rac1 interaction 

respectively, attenuated HG-induced p38MAPK phosphorylation. Additionally, EHT1864 

which blocks Rac1 activation in a GEF-independent manner, blocked p38MAPK 

phosphorylation. These findings implicate the contributory role of Rac1 activation in HG-

induced phosphorylation of p38MAPK. 

4. Our findings also suggested that HG-induced p53 phosphorylation is also regulated by 

Rac1, which is attenuated in presence of the Rac1 inhibitor, EHT1864. However, 

EHT1864 did not block p53 translocation to the nucleus suggesting that HG-induced p53 

nuclear localization is independent of its activation step. 
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5. Rac1 prenylation is also requisite for HG-induced p53 activation in INS-1 832/13 cells, 

since the presence of GGTI-2147, which blocks geranylgeranylation, and Simvastatin, a 

global inhibitor of protein prenylation, prevented p53 phosphorylation.  

6. SB203580, a selective inhibitor for p38MAPK, blocked HG-induced p53 phosphorylation, 

confirming the involvement of p38MAPK in activating p53 apoptotic pathway, under 

glucotoxic stress. 

7. EHT1864, which blocked HG-induced p38MAPK and p53 activation, also prevented β-cell 

death, confirming the role of Rac1-p38MAPK-p53 signaling cascade in β-cell apoptosis 

under glucotoxic conditions. 

8. Our findings also indicated marked activation of ATM kinase, a known activator of p53 and 

a cell cycle regulator, under HG exposure conditions, which was attenuated in the 

presence of EHT1864 and ATM kinase inhibitor, KU55933. However, KU55933 exerted 

no effect on HG-induced p53 phosphorylation, suggesting that ATM kinase might be 

involved in other regulatory pathways. 

Based on these findings, I conclude that chronic exposure of pancreatic β-cells to elevated 

glucose concentrations lead to sustained activation of Rac1-Nox2 enzyme complex and excess 

generation of intracellular ROS. The resulting oxidative stress leads to nuclear accumulation and 

p38MAPK-dependent phosphorylation of p53 tumor suppressor. These events, in turn, lead to 

transcription of several apoptotic genes mediated by p53, culminating in activation of apoptotic 

pathways and loss of β-cell mass. These studies provide the first evidence suggesting that 

therapeutic intervention of this signaling pathway prevents β-cell dysfunction under the duress of 

hyperglycemic conditions. 
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Future Directions: 

These finding have provided valuable insights into the role of Rac1-Nox2 holoenzyme and 

associated oxidative stress in mediating β-cell dysfunction under glucotoxic stress. However, 

studies are needed to further verify these findings in other invivo models of T2DM and human 

patients, and also fill several knowledge gaps. Some of these are listed below: 

 We have utilized the ZDF rat, as an animal model for T2DM, to verify our findings. 

However, since the ZDF rat develops diabetes as a result of genetic manipulations, we 

need to examine this pathway in a model for diabetes induced by diet/environment, as 

commonly seen in human populations. This can be addressed by utilizing the high-fat 

(45% kilocalories from fat) fed C57BL/6 mice model for diabetes to examine the activity 

levels of Rac1-Nox2 and p38MAPK-p53 signaling axes in the pancreatic islet. 

Furthermore, studies in pancreatic islets from Type2 diabetic patients would provide 

valuable evidence demonstrating the role of Rac1-p38MAPK-p53 module in human 

diabetic patients. 

 Our findings have implicated that Rac1 prenylation is requisite for HG-induced p53 

phosphorylation but not p38MAPK. Although, there is some evidence implicating the 

effects of prenylation inhibitors on p38MAPK activation, independent of their effects on 

Rac1, the involvement of Rac1 prenylation in mediating HG-induced effects needs to 

further examined. This can be addressed by utilizing Rac1 C189A (non-prenylatable) and 

V12Rac1 SAAX (non-prenylatable, constitutively active) mutants of Rac1. 

 Our studies have also suggested a possible role of ATM kinase in HG-induced effects. 

Activation of ATM kinase, which also seems to be regulated by Rac1, might be involved 

in other signaling mechanisms including DNA repair pathways. Studies by Oleson et al. 

have implicated ATM kinase activation in H2AX phosphorylation leading to DNA repair 

response in β-cells exposed to inflammatory cytokines (137). These mechanisms need to 

be examined in β-cells exposed to glucotoxic conditions. 
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 Lastly, we need to investigate if the Rac1-p38MAPK-p53 signlaing module is involved in 

β-cell dysfunction induced by exposure to saturated fatty acids (Palmitate) and 

glucolipotoxic conditions. Previous studies in our laboratory have shown increased Rac1-

Nox2 activity and oxidative stress in β-cells exposed to palmitate (50). Additional studies 

are need to examine activation of p38MAPK and p53, regulated by Rac1-Nox2 enzyme 

complex, under glucolipotoxic conditions. 
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Diabetes is a serious medical condition characterized by decreased insulin secretion from 

pancreatic β-cells and decreased insulin sensitivity in the peripheral tissues, resulting in elevated 

levels of blood glucose. According to the International Diabetes Federation, about 387 million 

cases have been reported worldwide in the year 2013 and it is estimated that about 500 million 

people would be affected by 2050. Type 2 diabetes, which accounts for about 90% of the total 

number of cases, is caused by decreased insulin sensitivity in the peripheral tissues and 

decreased glucose-stimulated insulin secretion from the pancreatic β-cells. The underlying 

mechanisms involved in β-cell dysfunction under hyperglycemic conditions are currently under 

investigation. Previous studies in our laboratory have implicated the role of Rac1-Nox2-induced 

oxidative stress in pancreatic β-cell dysfunction in models of impaired insulin secretion and T2DM. 

Studies in pancreatic islets derived from the ZDF rat and human diabetic donors have revealed 

increased activation of Rac1 and Nox2 subunits in these models. Further investigations have 

suggested the involvement of stress kinases in the activation of downstream apoptotic pathways, 

leading to β-cell death. Therefore, the primary objective of my dissertation project is to determine 

the role of Rac1-Nox2-derived oxidative stress in the activation of p38MAPK and p53 tumor 

suppressor, culminating in β-cell death under glucotoxic conditions. 
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Our studies have revealed that exposure of clonal β-cells (INS-1 832/13 cells) and rodent 

islets to glucotoxic conditions, results in the activation of p38MAPK and p53. We first, examined 

the regulatory role of Rac1-Nox2 holoenzyme in the activation of p38MAPK. We utilized 

pharmacological agents which target Rac1 and Nox2 function by various mechanisms and 

observed that inhibition of Rac1-Nox2 holoenzyme prevented HG-induced activation of 

p38MAPK. Since, it is well established that p38MAPK induces apoptosis via p53-dependent 

mechanisms, we next examined the regulation of p53 under these conditions. We observed that 

HG-induced p53 phosphorylation was significantly blocked in the presence of inhibitors of Rac1 

[EHT1864] and p38MAPK [SB203580]. Additionally, co-provision of Simvastatin, a global inhibitor 

of protein prenylation, and GGTI-2147, an inhibitor of geranylgeranylation, blocked HG-induced 

p53 phosphorylation, indicating that Rac1 prenylation is requisite for these signaling events. 

Furthermore, using cell death detection assay, we observed that inhibition of Rac1 [EHT1864] 

prevented HG-induced β-cell death. In our next set of studies, we verified our in vitro findings in 

INS-1 832/13 cells and rodent islets using human islets and islets derived from the ZDF rat. We 

observed increased activation of p38MAPK-p53 signaling axis in these models, thereby 

demonstrating the role of Rac1-p38MAPK-p53 signaling pathway in β-cell apoptosis under 

glucotoxic stress. In conclusion, we were able to demonstrate that sustained activation of Rac1-

Nox2 enzyme complex leads to excess ROS generation, and the resulting oxidative stress 

activates downstream p38MAPK-p53 signaling axis, which in turn, promotes activation of 

apoptotic genes, ultimately resulting in β-cell death. Our studies provide evidence that therapeutic 

intervention of this signaling pathway could be used as a tool for the prevention of β-cell 

dysfunction and the onset of type 2 diabetes. 
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